Skip to main content
Glama

MCP Memory Service

windows.md11.3 kB
# Windows Setup Guide This guide provides comprehensive instructions for setting up and running the MCP Memory Service on Windows systems, including handling common Windows-specific issues. ## Prerequisites - **Python 3.10 or newer** (Python 3.11 recommended) - **Git for Windows** ([download here](https://git-scm.com/download/win)) - **Visual Studio Build Tools** (for PyTorch compilation) - **PowerShell 5.1+** or **Windows Terminal** (recommended) ## Quick Installation ### Automatic Installation (Recommended) ```powershell # Clone repository git clone https://github.com/doobidoo/mcp-memory-service.git cd mcp-memory-service # Run Windows-specific installer python install.py --windows ``` The installer automatically: - Detects CUDA availability - Installs the correct PyTorch version - Configures Windows-specific settings - Sets up optimal storage backend ## Manual Installation ### 1. Environment Setup ```powershell # Clone repository git clone https://github.com/doobidoo/mcp-memory-service.git cd mcp-memory-service # Create virtual environment python -m venv venv # Activate virtual environment venv\Scripts\activate # Upgrade pip python -m pip install --upgrade pip ``` ### 2. Install Dependencies #### For CUDA-enabled Systems ```powershell # Install PyTorch with CUDA support pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 # Install other dependencies pip install -e . pip install chromadb sentence-transformers ``` #### For CPU-only Systems ```powershell # Install CPU-only PyTorch pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu # Install with SQLite-vec backend (recommended for CPU) pip install -e . pip install sentence-transformers sqlite-vec ``` ### 3. Windows-Specific Installation Script If you encounter issues, use the Windows-specific installation script: ```powershell python scripts/install_windows.py ``` This script handles: 1. CUDA detection and appropriate PyTorch installation 2. Resolving common Windows dependency conflicts 3. Setting up Windows-specific environment variables 4. Configuring optimal storage backend based on hardware ## Configuration ### Environment Variables #### For CUDA Systems ```powershell # Set environment variables (PowerShell) $env:MCP_MEMORY_STORAGE_BACKEND = "chromadb" $env:MCP_MEMORY_USE_CUDA = "true" $env:MCP_MEMORY_CHROMA_PATH = "$env:USERPROFILE\.mcp_memory_chroma" # Or set permanently [Environment]::SetEnvironmentVariable("MCP_MEMORY_STORAGE_BACKEND", "chromadb", "User") [Environment]::SetEnvironmentVariable("MCP_MEMORY_USE_CUDA", "true", "User") ``` #### For CPU-only Systems ```powershell # Set environment variables (PowerShell) $env:MCP_MEMORY_STORAGE_BACKEND = "sqlite_vec" $env:MCP_MEMORY_SQLITE_VEC_PATH = "$env:USERPROFILE\.mcp_memory_sqlite" $env:MCP_MEMORY_CPU_ONLY = "true" # Or set permanently [Environment]::SetEnvironmentVariable("MCP_MEMORY_STORAGE_BACKEND", "sqlite_vec", "User") [Environment]::SetEnvironmentVariable("MCP_MEMORY_CPU_ONLY", "true", "User") ``` ### Windows Batch Scripts The repository includes Windows batch scripts for easy startup: #### `scripts/run/run-with-uv.bat` ```batch @echo off cd /d "%~dp0..\.." call venv\Scripts\activate.bat python src\mcp_memory_service\server.py ``` #### Usage ```powershell # Run the server .\scripts\run\run-with-uv.bat # Or run directly python src\mcp_memory_service\server.py ``` ## Claude Desktop Configuration ### Windows Configuration File Location Claude Desktop configuration is typically located at: ``` %APPDATA%\Claude\claude_desktop_config.json ``` ### Configuration Examples #### For CUDA Systems ```json { "mcpServers": { "memory": { "command": "python", "args": ["C:\\path\\to\\mcp-memory-service\\src\\mcp_memory_service\\server.py"], "env": { "MCP_MEMORY_STORAGE_BACKEND": "chromadb", "MCP_MEMORY_USE_CUDA": "true", "PATH": "C:\\path\\to\\mcp-memory-service\\venv\\Scripts;%PATH%" } } } } ``` #### For CPU-only Systems ```json { "mcpServers": { "memory": { "command": "python", "args": ["C:\\path\\to\\mcp-memory-service\\src\\mcp_memory_service\\server.py"], "env": { "MCP_MEMORY_STORAGE_BACKEND": "sqlite_vec", "MCP_MEMORY_CPU_ONLY": "true", "PATH": "C:\\path\\to\\mcp-memory-service\\venv\\Scripts;%PATH%" } } } } ``` #### Using Batch Script ```json { "mcpServers": { "memory": { "command": "C:\\path\\to\\mcp-memory-service\\scripts\\run\\run-with-uv.bat" } } } ``` ## Hardware Detection and Optimization ### CUDA Detection The installer automatically detects CUDA availability: ```python def detect_cuda(): try: import torch return torch.cuda.is_available() except ImportError: return False ``` ### DirectML Support For Windows systems without CUDA but with DirectX 12 compatible GPUs: ```powershell # Install DirectML-enabled PyTorch pip install torch-directml ``` Configure for DirectML: ```powershell $env:MCP_MEMORY_USE_DIRECTML = "true" $env:MCP_MEMORY_DEVICE = "dml" ``` ## Windows-Specific Features ### Windows Service Installation To run MCP Memory Service as a Windows service: ```powershell # Install as Windows service (requires admin privileges) python scripts/install_windows_service.py install # Start service net start MCPMemoryService # Stop service net stop MCPMemoryService # Remove service python scripts/install_windows_service.py remove ``` ### Task Scheduler Integration Create a scheduled task to start MCP Memory Service on boot: ```powershell # Create scheduled task schtasks /create /tn "MCP Memory Service" /tr "C:\path\to\mcp-memory-service\scripts\run\run-with-uv.bat" /sc onlogon /ru "$env:USERNAME" # Delete scheduled task schtasks /delete /tn "MCP Memory Service" /f ``` ## Troubleshooting ### Common Windows Issues #### 1. Path Length Limitations **Symptom**: Installation fails with "path too long" errors **Solution**: Enable long path support: ```powershell # Run as Administrator New-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1 -PropertyType DWORD -Force ``` #### 2. Visual Studio Build Tools Missing **Symptom**: ``` Microsoft Visual C++ 14.0 is required ``` **Solution**: Install Visual Studio Build Tools: ```powershell # Download and install from: # https://visualstudio.microsoft.com/visual-cpp-build-tools/ # Or install via winget winget install Microsoft.VisualStudio.2022.BuildTools ``` #### 3. CUDA Version Mismatch **Symptom**: PyTorch CUDA installation issues **Solution**: Match PyTorch CUDA version to your installed CUDA: ```powershell # Check CUDA version nvcc --version # Install matching PyTorch version # For CUDA 11.8 pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 # For CUDA 12.1 pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 ``` #### 4. Permission Issues **Symptom**: Access denied errors when installing or running **Solution**: Run PowerShell as Administrator and check folder permissions: ```powershell # Check current user permissions whoami /groups # Run installation as Administrator if needed # Or adjust folder permissions icacls "C:\path\to\mcp-memory-service" /grant "$env:USERNAME:(F)" /t ``` #### 5. Windows Defender Issues **Symptom**: Installation files deleted or blocked **Solution**: Add exclusions to Windows Defender: ```powershell # Add folder exclusion (run as Administrator) Add-MpPreference -ExclusionPath "C:\path\to\mcp-memory-service" # Add process exclusion Add-MpPreference -ExclusionProcess "python.exe" ``` ### Diagnostic Commands #### System Information ```powershell # Check Python version and location python --version Get-Command python # Check pip version pip --version # Check CUDA availability python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')" # Check DirectML (if installed) python -c "import torch_directml; print('DirectML available')" # Check Windows version Get-ComputerInfo | Select-Object WindowsProductName, WindowsVersion ``` #### Environment Verification ```powershell # Check environment variables Get-ChildItem Env: | Where-Object {$_.Name -like "MCP_MEMORY_*"} # Check virtual environment echo $env:VIRTUAL_ENV # Verify key packages python -c "import torch; print(f'PyTorch: {torch.__version__}')" python -c "import sentence_transformers; print('SentenceTransformers: OK')" python -c "import chromadb; print('ChromaDB: OK')" # or sqlite_vec ``` #### Network and Firewall ```powershell # Check if Windows Firewall is blocking Get-NetFirewallRule -DisplayName "*Python*" | Format-Table # Test network connectivity (if using HTTP mode) Test-NetConnection -ComputerName localhost -Port 8000 ``` ### Performance Optimization #### Windows-Specific Settings ```powershell # Optimize for machine learning workloads $env:OMP_NUM_THREADS = [Environment]::ProcessorCount $env:MKL_NUM_THREADS = [Environment]::ProcessorCount # Set Windows-specific memory settings $env:MCP_MEMORY_WINDOWS_OPTIMIZATION = "true" $env:MCP_MEMORY_BATCH_SIZE = "32" ``` #### Resource Monitoring ```powershell # Monitor memory usage Get-Process python | Select-Object ProcessName, WorkingSet, CPU # Monitor GPU usage (if CUDA) nvidia-smi # Monitor disk I/O Get-Counter "\PhysicalDisk(_Total)\Disk Reads/sec" ``` ## Development on Windows ### Setting up Development Environment ```powershell # Clone for development git clone https://github.com/doobidoo/mcp-memory-service.git cd mcp-memory-service # Create development environment python -m venv venv-dev venv-dev\Scripts\activate # Install in development mode pip install -e . pip install pytest black isort mypy # Run tests pytest tests/ ``` ### Windows-Specific Testing ```powershell # Run Windows-specific tests pytest tests/platform/test_windows.py -v # Test CUDA functionality (if available) pytest tests/cuda/ -v # Test DirectML functionality (if available) pytest tests/directml/ -v ``` ## Alternative Installation Methods ### Using Chocolatey ```powershell # Install Python via Chocolatey choco install python # Install Git choco install git # Then follow standard installation ``` ### Using Conda ```powershell # Create conda environment conda create -n mcp-memory python=3.11 conda activate mcp-memory # Install PyTorch via conda conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia # Install other dependencies pip install -e . ``` ### Using Docker on Windows ```powershell # Using Docker Desktop git clone https://github.com/doobidoo/mcp-memory-service.git cd mcp-memory-service # Build Windows container docker build -f Dockerfile.windows -t mcp-memory-service-windows . # Run container docker run -p 8000:8000 mcp-memory-service-windows ``` ## Related Documentation - [Installation Guide](../installation/master-guide.md) - General installation instructions - [Multi-Client Setup](../integration/multi-client.md) - Multi-client configuration - [Troubleshooting](../troubleshooting/general.md) - Windows-specific troubleshooting - [Docker Deployment](../deployment/docker.md) - Docker setup on Windows

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/doobidoo/mcp-memory-service'

If you have feedback or need assistance with the MCP directory API, please join our Discord server