Skip to main content
Glama

MCP Memory Service

claude_integration.md2.5 kB
# MCP Memory Service - Development Guidelines ## Commands - Run memory server: `python scripts/run_memory_server.py` - Run tests: `pytest tests/` - Run specific test: `pytest tests/test_memory_ops.py::test_store_memory -v` - Check environment: `python scripts/verify_environment_enhanced.py` - Windows installation: `python scripts/install_windows.py` - Build package: `python -m build` ## Installation Guidelines - Always install in a virtual environment: `python -m venv venv` - Use `install.py` for cross-platform installation - Windows requires special PyTorch installation with correct index URL: ```bash pip install torch==2.1.0 torchvision==2.1.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118 ``` - For recursion errors, run: `python scripts/fix_sitecustomize.py` ## Memory Service Invocation - See the comprehensive [Invocation Guide](invocation_guide.md) for full details - Key trigger phrases: - **Storage**: "remember that", "remember this", "save to memory", "store in memory" - **Retrieval**: "do you remember", "recall", "retrieve from memory", "search your memory for" - **Tag-based**: "find memories with tag", "search for tag", "retrieve memories tagged" - **Deletion**: "forget", "delete from memory", "remove from memory" ## Code Style - Python 3.10+ with type hints - Use dataclasses for models (see `models/memory.py`) - Triple-quoted docstrings for modules and functions - Async/await pattern for all I/O operations - Error handling with specific exception types and informative messages - Logging with appropriate levels for different severity - Commit messages follow semantic release format: `type(scope): message` ## Project Structure - `src/mcp_memory_service/` - Core package code - `models/` - Data models - `storage/` - Database abstraction - `utils/` - Helper functions - `server.py` - MCP protocol implementation - `scripts/` - Utility scripts - `memory_wrapper.py` - Windows wrapper script - `install.py` - Cross-platform installation script ## Dependencies - ChromaDB (0.5.23) for vector database - sentence-transformers (>=2.2.2) for embeddings - PyTorch (platform-specific installation) - MCP protocol (>=1.0.0, <2.0.0) for client-server communication ## Troubleshooting - For Windows installation issues, use `scripts/install_windows.py` - Apple Silicon requires Python 3.10+ built for ARM64 - CUDA issues: verify with `torch.cuda.is_available()` - For MCP protocol issues, check `server.py` for required methods

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/doobidoo/mcp-memory-service'

If you have feedback or need assistance with the MCP directory API, please join our Discord server