autonomous-memory-consolidation.md•15.7 kB
# Autonomous Implementation Guide for Dream-Inspired Memory Consolidation
## Overview
This document provides a comprehensive guide for implementing the [Dream-Inspired Memory Consolidation System](./dream-inspired-memory-consolidation.md) as a fully autonomous system that runs without external AI dependencies.
## Key Insight
**The dream-inspired memory consolidation system can run almost entirely on autopilot** by leveraging the embeddings already generated during memory storage. These embeddings, combined with mathematical algorithms and rule-based logic, enable autonomous operation without external AI.
## Autonomous Components Analysis
### ✅ 100% Autonomous: Exponential Decay Scoring
Pure mathematical calculations requiring zero AI intervention:
```python
import math
from datetime import datetime
class AutonomousDecayCalculator:
def __init__(self, retention_periods):
self.retention_periods = retention_periods
def calculate_relevance(self, memory):
"""Calculate memory relevance using pure math."""
age = (datetime.now() - memory.created_at).total_seconds() / 86400 # days
base_score = memory.importance_score
retention_period = self.retention_periods.get(
memory.memory_type,
self.retention_periods['default']
)
# Exponential decay
decay_factor = math.exp(-age / retention_period)
# Connection boost (pure counting)
connection_boost = 1 + (0.1 * len(memory.connections))
return base_score * decay_factor * connection_boost
```
### ✅ 100% Autonomous: Creative Association System
Uses existing embeddings with vector mathematics:
```python
import numpy as np
from itertools import combinations
import random
class AutonomousAssociationEngine:
def __init__(self, similarity_threshold=(0.3, 0.7)):
self.min_similarity, self.max_similarity = similarity_threshold
def find_associations(self, memories):
"""Find creative connections using only embeddings."""
# Limit pairs to prevent combinatorial explosion
max_pairs = min(100, len(memories) * (len(memories) - 1) // 2)
if len(memories) < 2:
return []
# Random sampling of pairs
all_pairs = list(combinations(range(len(memories)), 2))
sampled_pairs = random.sample(
all_pairs,
min(max_pairs, len(all_pairs))
)
associations = []
for i, j in sampled_pairs:
# Cosine similarity using existing embeddings
similarity = self._cosine_similarity(
memories[i].embedding,
memories[j].embedding
)
# Check if in creative "sweet spot"
if self.min_similarity < similarity < self.max_similarity:
associations.append({
'memory_1': memories[i].hash,
'memory_2': memories[j].hash,
'similarity': similarity,
'discovered_at': datetime.now()
})
return associations
def _cosine_similarity(self, vec1, vec2):
"""Calculate cosine similarity between two vectors."""
vec1 = np.array(vec1)
vec2 = np.array(vec2)
dot_product = np.dot(vec1, vec2)
norm_product = np.linalg.norm(vec1) * np.linalg.norm(vec2)
return dot_product / norm_product if norm_product > 0 else 0
```
### ✅ 100% Autonomous: Controlled Forgetting
Rule-based logic with no AI required:
```python
class AutonomousPruningEngine:
def __init__(self, config):
self.relevance_threshold = config['relevance_threshold']
self.access_threshold_days = config['access_threshold_days']
self.protected_tags = {'important', 'critical', 'reference'}
def identify_forgettable_memories(self, memories):
"""Identify memories for archival using rules."""
forgettable = []
for memory in memories:
# Skip protected memories
if memory.tags & self.protected_tags:
continue
# Check relevance score
if memory.relevance_score < self.relevance_threshold:
# Check connections
if len(memory.connections) == 0:
# Check last access
days_since_access = (
datetime.now() - memory.last_accessed
).days
if days_since_access > self.access_threshold_days:
forgettable.append(memory)
return forgettable
```
### 🔧 90% Autonomous: Semantic Compression
Uses statistical methods instead of generative AI:
```python
from collections import Counter
from sklearn.cluster import AgglomerativeClustering
import numpy as np
class AutonomousCompressionEngine:
def __init__(self):
self.keyword_extractor = TFIDFKeywordExtractor()
def compress_cluster(self, memories):
"""Compress memories without using generative AI."""
if not memories:
return None
# 1. Find centroid (most representative memory)
embeddings = np.array([m.embedding for m in memories])
centroid = np.mean(embeddings, axis=0)
# Calculate distances to centroid
distances = [
np.linalg.norm(centroid - emb)
for emb in embeddings
]
representative_idx = np.argmin(distances)
representative_memory = memories[representative_idx]
# 2. Extract keywords using TF-IDF
all_content = ' '.join([m.content for m in memories])
keywords = self.keyword_extractor.extract(all_content, top_k=20)
# 3. Aggregate metadata
all_tags = set()
for memory in memories:
all_tags.update(memory.tags)
# 4. Create structured summary (not prose)
compressed = {
"type": "compressed_cluster",
"representative_content": representative_memory.content,
"representative_hash": representative_memory.hash,
"cluster_size": len(memories),
"keywords": keywords,
"common_tags": list(all_tags),
"temporal_range": {
"start": min(m.created_at for m in memories),
"end": max(m.created_at for m in memories)
},
"centroid_embedding": centroid.tolist(),
"member_hashes": [m.hash for m in memories]
}
return compressed
class TFIDFKeywordExtractor:
"""Simple TF-IDF based keyword extraction."""
def extract(self, text, top_k=10):
# Simple word frequency for demonstration
# In practice, use sklearn's TfidfVectorizer
words = text.lower().split()
word_freq = Counter(words)
# Filter common words (simple stopword removal)
stopwords = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at'}
keywords = [
(word, count)
for word, count in word_freq.most_common(top_k * 2)
if word not in stopwords and len(word) > 3
]
return keywords[:top_k]
```
## Complete Autonomous Architecture
```python
from apscheduler.schedulers.background import BackgroundScheduler
import logging
class AutonomousMemoryConsolidator:
"""
Fully autonomous memory consolidation system.
Runs without any external AI dependencies.
"""
def __init__(self, storage, config):
self.storage = storage
self.config = config
# Initialize autonomous components
self.decay_calculator = AutonomousDecayCalculator(
config['retention_periods']
)
self.association_engine = AutonomousAssociationEngine()
self.compression_engine = AutonomousCompressionEngine()
self.pruning_engine = AutonomousPruningEngine(config['forgetting'])
# Setup scheduling
self.scheduler = BackgroundScheduler()
self._setup_schedules()
logging.info("Autonomous Memory Consolidator initialized")
def _setup_schedules(self):
"""Configure autonomous scheduling."""
# Daily consolidation at 3 AM
self.scheduler.add_job(
func=self.run_daily_consolidation,
trigger="cron",
hour=3,
minute=0,
id="daily_consolidation"
)
# Weekly consolidation on Mondays at 4 AM
self.scheduler.add_job(
func=self.run_weekly_consolidation,
trigger="cron",
day_of_week='mon',
hour=4,
minute=0,
id="weekly_consolidation"
)
# Monthly consolidation on 1st at 5 AM
self.scheduler.add_job(
func=self.run_monthly_consolidation,
trigger="cron",
day=1,
hour=5,
minute=0,
id="monthly_consolidation"
)
def start(self):
"""Start the autonomous consolidation system."""
self.scheduler.start()
logging.info("Autonomous consolidation scheduler started")
async def run_daily_consolidation(self):
"""Daily consolidation - fully autonomous."""
try:
# Get recent memories
memories = await self.storage.get_recent_memories(days=1)
# Update relevance scores (pure math)
for memory in memories:
memory.relevance_score = self.decay_calculator.calculate_relevance(memory)
await self.storage.update_relevance_score(memory.hash, memory.relevance_score)
# Find associations (vector math)
associations = self.association_engine.find_associations(memories)
for assoc in associations:
await self.storage.store_association(assoc)
logging.info(
f"Daily consolidation complete: "
f"{len(memories)} memories processed, "
f"{len(associations)} associations found"
)
except Exception as e:
logging.error(f"Daily consolidation failed: {e}")
async def run_weekly_consolidation(self):
"""Weekly consolidation with clustering."""
try:
# Get week's memories
memories = await self.storage.get_recent_memories(days=7)
# Cluster memories using embeddings
clusters = self._cluster_memories(memories)
# Compress large clusters
for cluster in clusters:
if len(cluster) >= self.config['compression']['min_cluster_size']:
compressed = self.compression_engine.compress_cluster(cluster)
await self.storage.store_compressed_memory(compressed)
logging.info(f"Weekly consolidation: {len(clusters)} clusters processed")
except Exception as e:
logging.error(f"Weekly consolidation failed: {e}")
def _cluster_memories(self, memories, threshold=0.3):
"""Cluster memories using hierarchical clustering."""
if len(memories) < 2:
return [[m] for m in memories]
# Extract embeddings
embeddings = np.array([m.embedding for m in memories])
# Hierarchical clustering
clustering = AgglomerativeClustering(
n_clusters=None,
distance_threshold=threshold,
linkage='average'
)
labels = clustering.fit_predict(embeddings)
# Group by cluster
clusters = {}
for idx, label in enumerate(labels):
if label not in clusters:
clusters[label] = []
clusters[label].append(memories[idx])
return list(clusters.values())
```
## Deployment Configuration
```yaml
# autonomous_consolidation_config.yaml
autonomous_mode:
enabled: true
# No external AI endpoints needed!
external_ai_required: false
# Retention periods (in days)
retention_periods:
critical: 365
reference: 180
standard: 30
temporary: 7
default: 30
# Association discovery
associations:
min_similarity: 0.3
max_similarity: 0.7
max_pairs_per_run: 100
enabled: true
# Forgetting rules
forgetting:
relevance_threshold: 0.1
access_threshold_days: 90
archive_path: "./memory_archive"
enabled: true
# Compression settings
compression:
min_cluster_size: 5
clustering_threshold: 0.3
enabled: true
# Scheduling (cron expressions)
schedules:
daily: "0 3 * * *" # 3:00 AM daily
weekly: "0 4 * * 1" # 4:00 AM Mondays
monthly: "0 5 1 * *" # 5:00 AM first of month
```
## Key Advantages of Autonomous Operation
### 1. **Complete Independence**
- No API keys required
- No external service dependencies
- No internet connection needed
- Works entirely offline
### 2. **Predictable Behavior**
- Deterministic algorithms
- Reproducible results
- Easy to debug and test
- Consistent performance
### 3. **Cost Efficiency**
- Zero ongoing AI costs
- No API rate limits
- No usage-based billing
- Minimal computational resources
### 4. **Privacy & Security**
- All processing stays local
- No data leaves your system
- Complete data sovereignty
- No third-party exposure
### 5. **Performance**
- No network latency
- Instant processing
- Parallel operations possible
- Scales with local hardware
## What's Different from AI-Powered Version?
| Feature | AI-Powered | Autonomous |
|---------|------------|------------|
| Natural language summaries | ✅ Eloquent prose | ❌ Structured data |
| Complex reasoning | ✅ Nuanced understanding | ❌ Rule-based logic |
| Summary quality | ✅ Human-like | ✅ Statistically representative |
| Cost | 💰 Ongoing API costs | ✅ Free after setup |
| Speed | 🐌 Network dependent | 🚀 Local processing |
| Privacy | ⚠️ Data sent to API | 🔒 Completely private |
| Reliability | ⚠️ Service dependent | ✅ Always available |
## Implementation Checklist
- [ ] Install required Python packages (numpy, scikit-learn, apscheduler)
- [ ] Configure retention periods for your use case
- [ ] Set up clustering thresholds based on your embedding model
- [ ] Configure scheduling based on your memory volume
- [ ] Test each component independently
- [ ] Monitor initial runs and adjust thresholds
- [ ] Set up logging and monitoring
- [ ] Create backup strategy for archived memories
## Conclusion
The autonomous implementation proves that sophisticated memory consolidation doesn't require external AI. By leveraging existing embeddings and mathematical algorithms, we achieve a system that mimics biological memory processes while maintaining complete independence, privacy, and cost-effectiveness.
This approach transforms the dream-inspired concept into a practical, deployable system that can run indefinitely without human intervention or external dependencies - a true "set it and forget it" solution for memory management.
---
*Related Documents:*
- [Dream-Inspired Memory Consolidation System](./dream-inspired-memory-consolidation.md)
- [Issue #11: Multi-Layered Memory Consolidation](https://github.com/doobidoo/mcp-memory-service/issues/11)
*Created: July 28, 2025*