Skip to main content
Glama

solve_integer_program_tool

Solve integer or mixed-integer programming problems for discrete decision-making in areas like facility location, project selection, crew scheduling, and capital budgeting using PuLP-based optimization.

Instructions

Solve an integer or mixed-integer programming problem using PuLP.

This tool solves optimization problems where some or all variables must take integer values, which is useful for discrete decision problems. Use cases: - Facility location: Decide where to build warehouses or service centers - Project selection: Choose which projects to fund (binary decisions) - Crew scheduling: Assign integer numbers of staff to shifts - Network design: Design networks with discrete components - Cutting stock: Minimize waste when cutting materials - Capital budgeting: Select investments when partial investments aren't allowed Args: objective: Objective function with 'sense' and 'coefficients' variables: Variable definitions with types "continuous", "integer", or "binary" constraints: List of linear constraints solver: Solver to use ("CBC", "GLPK", "GUROBI", "CPLEX") time_limit_seconds: Maximum time to spend solving (optional) Returns: Optimization result with integer/binary variable values Example: # Binary knapsack: select items to maximize value within weight limit solve_integer_program( objective={"sense": "maximize", "coefficients": {"item1": 10, "item2": 15}}, variables={ "item1": {"type": "binary"}, "item2": {"type": "binary"} }, constraints=[ {"expression": {"item1": 5, "item2": 8}, "operator": "<=", "rhs": 10} ] )

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
constraintsYes
objectiveYes
solverNoCBC
time_limit_secondsNo
variablesYes

Implementation Reference

  • The MCP tool handler function decorated with @mcp.tool(). It validates inputs using Pydantic schemas, calls the solve_integer_program helper, and returns the optimization result.
    @mcp.tool() def solve_integer_program_tool( objective: dict[str, Any], variables: dict[str, dict[str, Any]], constraints: list[dict[str, Any]], solver: str = "CBC", time_limit_seconds: float | None = None, ) -> dict[str, Any]: """Solve an integer or mixed-integer programming problem using PuLP. This tool solves optimization problems where some or all variables must take integer values, which is useful for discrete decision problems. Use cases: - Facility location: Decide where to build warehouses or service centers - Project selection: Choose which projects to fund (binary decisions) - Crew scheduling: Assign integer numbers of staff to shifts - Network design: Design networks with discrete components - Cutting stock: Minimize waste when cutting materials - Capital budgeting: Select investments when partial investments aren't allowed Args: objective: Objective function with 'sense' and 'coefficients' variables: Variable definitions with types "continuous", "integer", or "binary" constraints: List of linear constraints solver: Solver to use ("CBC", "GLPK", "GUROBI", "CPLEX") time_limit_seconds: Maximum time to spend solving (optional) Returns: Optimization result with integer/binary variable values Example: # Binary knapsack: select items to maximize value within weight limit solve_integer_program( objective={"sense": "maximize", "coefficients": {"item1": 10, "item2": 15}}, variables={ "item1": {"type": "binary"}, "item2": {"type": "binary"} }, constraints=[ {"expression": {"item1": 5, "item2": 8}, "operator": "<=", "rhs": 10} ] ) """ result = solve_integer_program( objective, variables, constraints, solver, time_limit_seconds ) result_dict: dict[str, Any] = result return result_dict
  • Pydantic BaseModel classes for Variable, Objective, and Constraint that provide input schema validation and typing for the tool parameters.
    class Variable(BaseModel): """Variable definition for optimization problems.""" type: VariableType = Field( default=VariableType.CONTINUOUS, description="Type of the variable", ) lower: float | None = Field( default=None, description="Lower bound of the variable", ) upper: float | None = Field( default=None, description="Upper bound of the variable", ) class Objective(BaseModel): """Objective function definition.""" sense: ObjectiveSense = Field(description="Optimization sense") coefficients: dict[str, float] = Field( description="Coefficients for variables in the objective function" ) class Constraint(BaseModel): """Constraint definition.""" name: str | None = Field( default=None, description="Name of the constraint", ) expression: dict[str, float] = Field(description="Left-hand side coefficients") operator: ConstraintOperator = Field(description="Constraint operator") rhs: float = Field(description="Right-hand side value")
  • The call to register_linear_programming_tools(mcp) in the create_mcp_server function, which triggers the registration of the solve_integer_program_tool.
    register_linear_programming_tools(mcp)
  • The registration function that defines the tool functions with @mcp.tool() decorators inside it.
    def register_linear_programming_tools(mcp: FastMCP[Any]) -> None: """Register linear programming tools with the MCP server.""" @mcp.tool() def solve_linear_program_tool( objective: dict[str, Any], variables: dict[str, dict[str, Any]], constraints: list[dict[str, Any]], solver: str = "CBC", time_limit_seconds: float | None = None, ) -> dict[str, Any]: """Solve a linear programming problem using PuLP. This tool solves general linear programming problems where you want to optimize a linear objective function subject to linear constraints. Use cases: - Resource allocation: Distribute limited resources optimally - Diet planning: Create nutritionally balanced meal plans within budget - Manufacturing mix: Determine optimal product mix to maximize profit - Investment planning: Allocate capital across different investment options - Supply chain optimization: Minimize transportation and storage costs - Energy optimization: Optimize power generation and distribution Args: objective: Objective function with 'sense' ("minimize" or "maximize") and 'coefficients' (dict mapping variable names to coefficients) variables: Variable definitions mapping variable names to their properties (type: "continuous"/"integer"/"binary", lower: bound, upper: bound) constraints: List of constraints, each with 'expression' (coefficients), 'operator' ("<=", ">=", "=="), and 'rhs' (right-hand side value) solver: Solver to use ("CBC", "GLPK", "GUROBI", "CPLEX") time_limit_seconds: Maximum time to spend solving (optional) Returns: Optimization result with status, objective value, variable values, and solver info Example: # Maximize 3x + 2y subject to 2x + y <= 20, x + 3y <= 30, x,y >= 0 solve_linear_program( objective={"sense": "maximize", "coefficients": {"x": 3, "y": 2}}, variables={ "x": {"type": "continuous", "lower": 0}, "y": {"type": "continuous", "lower": 0} }, constraints=[ {"expression": {"x": 2, "y": 1}, "operator": "<=", "rhs": 20}, {"expression": {"x": 1, "y": 3}, "operator": "<=", "rhs": 30} ] ) """ result = solve_linear_program(objective, variables, constraints, solver, time_limit_seconds) result_dict: dict[str, Any] = result return result_dict @mcp.tool() def solve_integer_program_tool( objective: dict[str, Any], variables: dict[str, dict[str, Any]], constraints: list[dict[str, Any]], solver: str = "CBC", time_limit_seconds: float | None = None, ) -> dict[str, Any]: """Solve an integer or mixed-integer programming problem using PuLP. This tool solves optimization problems where some or all variables must take integer values, which is useful for discrete decision problems. Use cases: - Facility location: Decide where to build warehouses or service centers - Project selection: Choose which projects to fund (binary decisions) - Crew scheduling: Assign integer numbers of staff to shifts - Network design: Design networks with discrete components - Cutting stock: Minimize waste when cutting materials - Capital budgeting: Select investments when partial investments aren't allowed Args: objective: Objective function with 'sense' and 'coefficients' variables: Variable definitions with types "continuous", "integer", or "binary" constraints: List of linear constraints solver: Solver to use ("CBC", "GLPK", "GUROBI", "CPLEX") time_limit_seconds: Maximum time to spend solving (optional) Returns: Optimization result with integer/binary variable values Example: # Binary knapsack: select items to maximize value within weight limit solve_integer_program( objective={"sense": "maximize", "coefficients": {"item1": 10, "item2": 15}}, variables={ "item1": {"type": "binary"}, "item2": {"type": "binary"} }, constraints=[ {"expression": {"item1": 5, "item2": 8}, "operator": "<=", "rhs": 10} ] ) """ result = solve_integer_program( objective, variables, constraints, solver, time_limit_seconds ) result_dict: dict[str, Any] = result return result_dict logger.info("Registered linear programming tools")
  • Helper function that performs the actual integer programming solving using PuLPSolver after schema validation.
    @with_resource_limits(timeout_seconds=60.0, estimated_memory_mb=100.0) def solve_integer_program( objective: dict[str, Any], variables: dict[str, dict[str, Any]], constraints: list[dict[str, Any]], solver: str = "CBC", time_limit_seconds: float | None = None, ) -> dict[str, Any]: """Solve an integer programming problem using PuLP.""" try: # Parse and validate input obj = Objective(**objective) vars_dict = {name: Variable(**var_def) for name, var_def in variables.items()} constraints_list = [Constraint(**constraint) for constraint in constraints] # Create and solve problem with integer variables pulp_solver = PuLPSolver(solver) result = pulp_solver.solve_linear_program( objective=obj, variables=vars_dict, constraints=constraints_list, time_limit=time_limit_seconds, ) return result except Exception as e: logger.error(f"Integer programming error: {e}") return { "status": "error", "error_message": f"Failed to solve integer program: {str(e)}", "objective_value": None, "variables": {}, "execution_time": 0.0, "solver_info": {}, }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/dmitryanchikov/mcp-optimizer'

If you have feedback or need assistance with the MCP directory API, please join our Discord server