Skip to main content
Glama

optimize_portfolio_tool

Optimize asset allocation to achieve financial goals by maximizing returns, minimizing risk, or balancing portfolios using customizable constraints and advanced solvers.

Instructions

Optimize portfolio allocation to maximize return or minimize risk.

Args: assets: List of asset dictionaries with expected return, risk, and sector objective: Optimization objective ("maximize_return", "minimize_risk", "maximize_sharpe", "risk_parity") budget: Total budget to allocate (default: 1.0) risk_tolerance: Maximum acceptable portfolio risk (optional) sector_constraints: Maximum allocation per sector (optional) min_allocation: Minimum allocation per asset (default: 0.0) max_allocation: Maximum allocation per asset (default: 1.0) solver_name: Solver to use ("CBC", "GLPK", "GUROBI", "CPLEX") time_limit_seconds: Maximum solving time in seconds (default: 30.0) Returns: Optimization result with optimal portfolio allocation

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
assetsYes
budgetNo
max_allocationNo
min_allocationNo
objectiveNomaximize_return
risk_toleranceNo
sector_constraintsNo
solver_nameNoCBC
time_limit_secondsNo

Implementation Reference

  • The primary handler function for the optimize_portfolio_tool MCP tool. It receives input parameters and delegates to the optimize_portfolio helper function to perform the actual computation.
    def optimize_portfolio_tool( assets: list[dict[str, Any]], objective: str = "maximize_return", budget: float = 1.0, risk_tolerance: float | None = None, sector_constraints: dict[str, float] | None = None, min_allocation: float = 0.0, max_allocation: float = 1.0, solver_name: str = "CBC", time_limit_seconds: float = 30.0, ) -> dict[str, Any]: """Optimize portfolio allocation to maximize return or minimize risk. Args: assets: List of asset dictionaries with expected return, risk, and sector objective: Optimization objective ("maximize_return", "minimize_risk", "maximize_sharpe", "risk_parity") budget: Total budget to allocate (default: 1.0) risk_tolerance: Maximum acceptable portfolio risk (optional) sector_constraints: Maximum allocation per sector (optional) min_allocation: Minimum allocation per asset (default: 0.0) max_allocation: Maximum allocation per asset (default: 1.0) solver_name: Solver to use ("CBC", "GLPK", "GUROBI", "CPLEX") time_limit_seconds: Maximum solving time in seconds (default: 30.0) Returns: Optimization result with optimal portfolio allocation """ return optimize_portfolio( assets, objective, budget, risk_tolerance, sector_constraints, min_allocation, max_allocation, )
  • Function that registers the financial tools, including optimize_portfolio_tool, by defining it with the @mcp.tool() decorator.
    def register_financial_tools(mcp: FastMCP[Any]) -> None: """Register financial optimization tools with MCP server.""" @mcp.tool() def optimize_portfolio_tool( assets: list[dict[str, Any]], objective: str = "maximize_return", budget: float = 1.0, risk_tolerance: float | None = None, sector_constraints: dict[str, float] | None = None, min_allocation: float = 0.0, max_allocation: float = 1.0, solver_name: str = "CBC", time_limit_seconds: float = 30.0, ) -> dict[str, Any]: """Optimize portfolio allocation to maximize return or minimize risk. Args: assets: List of asset dictionaries with expected return, risk, and sector objective: Optimization objective ("maximize_return", "minimize_risk", "maximize_sharpe", "risk_parity") budget: Total budget to allocate (default: 1.0) risk_tolerance: Maximum acceptable portfolio risk (optional) sector_constraints: Maximum allocation per sector (optional) min_allocation: Minimum allocation per asset (default: 0.0) max_allocation: Maximum allocation per asset (default: 1.0) solver_name: Solver to use ("CBC", "GLPK", "GUROBI", "CPLEX") time_limit_seconds: Maximum solving time in seconds (default: 30.0) Returns: Optimization result with optimal portfolio allocation """ return optimize_portfolio( assets, objective, budget, risk_tolerance, sector_constraints, min_allocation, max_allocation, )
  • The call to register_financial_tools during MCP server creation, which triggers the registration of the optimize_portfolio_tool.
    register_financial_tools(mcp)
  • Pydantic BaseModel classes (Asset and PortfolioInput) that define and validate the structure of input data used in the portfolio optimization.
    class Asset(BaseModel): """Asset definition with return and risk characteristics.""" name: str expected_return: float risk: float = Field(ge=0) sector: str | None = None current_price: float | None = Field(default=None, ge=0) min_allocation: float = Field(default=0.0, ge=0, le=1) max_allocation: float = Field(default=1.0, ge=0, le=1) @field_validator("max_allocation") @classmethod def validate_max_allocation(cls, v: float, info: ValidationInfo) -> float: if info.data and "min_allocation" in info.data and v < info.data["min_allocation"]: raise ValueError("max_allocation must be >= min_allocation") return v class PortfolioInput(BaseModel): """Input schema for Portfolio Optimization.""" assets: list[Asset] budget: float = Field(gt=0) risk_tolerance: float = Field(ge=0) min_allocation: float = Field(default=0.0, ge=0, le=1) max_allocation: float = Field(default=1.0, ge=0, le=1) sector_limits: dict[str, float] = Field(default_factory=dict) objective: str = Field( default="maximize_return", pattern="^(maximize_return|minimize_risk|sharpe_ratio)$", ) risk_free_rate: float = Field(default=0.02, ge=0) correlation_matrix: list[list[float]] | None = None @field_validator("assets") @classmethod def validate_assets(cls, v: list[Asset]) -> list[Asset]: if not v: raise ValueError("At least one asset required") return v @field_validator("sector_limits") @classmethod def validate_sector_limits(cls, v: dict[str, float]) -> dict[str, float]: for sector, limit in v.items(): if not (0 <= limit <= 1): raise ValueError(f"Sector limit for {sector} must be between 0 and 1") return v @field_validator("correlation_matrix") @classmethod def validate_correlation_matrix( cls, v: list[list[float]] | None, info: ValidationInfo ) -> list[list[float]] | None: if v is not None and info.data and "assets" in info.data: n = len(info.data["assets"]) if len(v) != n or any(len(row) != n for row in v): raise ValueError("Correlation matrix dimensions must match number of assets") # Check if matrix is symmetric and diagonal elements are 1 for i in range(n): if abs(v[i][i] - 1.0) > 1e-6: raise ValueError("Diagonal elements of correlation matrix must be 1") for j in range(i): if abs(v[i][j] - v[j][i]) > 1e-6: raise ValueError("Correlation matrix must be symmetric") return v
  • Core helper function implementing the PuLP-based linear programming solver for portfolio optimization, handling objectives like maximize_return, minimize_risk, etc.
    def solve_portfolio_optimization(input_data: dict[str, Any]) -> OptimizationResult: """Solve Portfolio Optimization Problem using PuLP. Args: input_data: Portfolio optimization problem specification Returns: OptimizationResult with optimal portfolio allocation """ start_time = time.time() try: # Parse and validate input portfolio_input = PortfolioInput(**input_data) assets = portfolio_input.assets budget = portfolio_input.budget # Create optimization problem if portfolio_input.objective == "maximize_return": prob = pulp.LpProblem("Portfolio_Optimization", pulp.LpMaximize) else: prob = pulp.LpProblem("Portfolio_Optimization", pulp.LpMinimize) # Decision variables: allocation amounts for each asset allocations = {} for asset in assets: allocations[asset.name] = pulp.LpVariable( f"allocation_{asset.name}", lowBound=asset.min_allocation * budget, upBound=asset.max_allocation * budget, cat="Continuous", ) # Budget constraint prob += pulp.lpSum(allocations.values()) == budget, "Budget_Constraint" # Global allocation constraints for asset in assets: prob += ( allocations[asset.name] >= portfolio_input.min_allocation * budget, f"Min_Allocation_{asset.name}", ) prob += ( allocations[asset.name] <= portfolio_input.max_allocation * budget, f"Max_Allocation_{asset.name}", ) # Sector constraints sectors: dict[str, list[Any]] = {} for asset in assets: if asset.sector: if asset.sector not in sectors: sectors[asset.sector] = [] sectors[asset.sector].append(allocations[asset.name]) for sector, limit in portfolio_input.sector_limits.items(): if sector in sectors: prob += ( pulp.lpSum(sectors[sector]) <= limit * budget, f"Sector_Limit_{sector}", ) # Objective function if portfolio_input.objective == "maximize_return": # Maximize expected return expected_return = pulp.lpSum( allocations[asset.name] * asset.expected_return / budget for asset in assets ) prob += expected_return, "Expected_Return" elif portfolio_input.objective == "minimize_risk": # Minimize portfolio risk (simplified as weighted average of individual risks) # Note: This is a simplification. True portfolio risk requires covariance matrix if portfolio_input.correlation_matrix: # Use correlation matrix to calculate portfolio variance portfolio_variance = 0 for i, asset_i in enumerate(assets): for j, asset_j in enumerate(assets): weight_i = allocations[asset_i.name] / budget weight_j = allocations[asset_j.name] / budget correlation = portfolio_input.correlation_matrix[i][j] portfolio_variance += ( weight_i * weight_j * asset_i.risk * asset_j.risk * correlation ) # Since PuLP doesn't handle quadratic objectives directly, we'll use a linear approximation # This is a limitation - for true portfolio optimization, a QP solver would be better portfolio_risk = pulp.lpSum( allocations[asset.name] * asset.risk / budget for asset in assets ) else: portfolio_risk = pulp.lpSum( allocations[asset.name] * asset.risk / budget for asset in assets ) prob += portfolio_risk, "Portfolio_Risk" elif portfolio_input.objective == "sharpe_ratio": # Maximize Sharpe ratio (simplified) # This is complex to implement directly in linear programming # We'll approximate by maximizing return - risk_penalty * risk risk_penalty = ( 1.0 / portfolio_input.risk_tolerance if portfolio_input.risk_tolerance > 0 else 1.0 ) expected_return = pulp.lpSum( allocations[asset.name] * asset.expected_return / budget for asset in assets ) portfolio_risk = pulp.lpSum( allocations[asset.name] * asset.risk / budget for asset in assets ) sharpe_approximation = expected_return - risk_penalty * portfolio_risk prob += sharpe_approximation, "Sharpe_Approximation" # Risk tolerance constraint if portfolio_input.risk_tolerance > 0: portfolio_risk = pulp.lpSum( allocations[asset.name] * asset.risk / budget for asset in assets ) prob += portfolio_risk <= portfolio_input.risk_tolerance, "Risk_Tolerance" # Solve prob.solve(pulp.PULP_CBC_CMD(msg=0)) # Process results status = pulp.LpStatus[prob.status] execution_time = time.time() - start_time if prob.status == pulp.LpStatusOptimal: # Extract solution portfolio_allocation = {} total_allocation = 0 portfolio_return = 0 portfolio_risk = 0 for asset in assets: allocation_amount = allocations[asset.name].varValue allocation_weight = allocation_amount / budget portfolio_allocation[asset.name] = { "amount": allocation_amount, "weight": allocation_weight, "expected_return": asset.expected_return, "risk": asset.risk, "sector": asset.sector, } total_allocation += allocation_amount portfolio_return += allocation_weight * asset.expected_return portfolio_risk += allocation_weight * asset.risk # Calculate portfolio metrics portfolio_variance = portfolio_risk**2 # Simplified portfolio_std = math.sqrt(portfolio_variance) if portfolio_variance > 0 else 0 sharpe_ratio = ( (portfolio_return - portfolio_input.risk_free_rate) / portfolio_std if portfolio_std > 0 else 0 ) # Sector allocation summary sector_allocation = {} for asset in assets: if asset.sector: if asset.sector not in sector_allocation: sector_allocation[asset.sector] = 0 sector_allocation[asset.sector] += portfolio_allocation[asset.name]["weight"] return OptimizationResult( status=OptimizationStatus.OPTIMAL, objective_value=pulp.value(prob.objective), variables={ "portfolio_allocation": portfolio_allocation, "portfolio_metrics": { "total_allocation": total_allocation, "expected_return": portfolio_return, "portfolio_risk": portfolio_risk, "portfolio_std": portfolio_std, "sharpe_ratio": sharpe_ratio, "risk_free_rate": portfolio_input.risk_free_rate, }, "sector_allocation": sector_allocation, "budget_utilization": total_allocation / budget, }, execution_time=execution_time, solver_info={ "solver_name": "PuLP CBC", "objective": portfolio_input.objective, "num_assets": len(assets), "num_sectors": len(sector_allocation), }, ) elif prob.status == pulp.LpStatusInfeasible: return OptimizationResult( status=OptimizationStatus.INFEASIBLE, error_message="Portfolio optimization problem is infeasible. Check constraints.", execution_time=execution_time, ) elif prob.status == pulp.LpStatusUnbounded: return OptimizationResult( status=OptimizationStatus.UNBOUNDED, error_message="Portfolio optimization problem is unbounded.", execution_time=execution_time, ) else: return OptimizationResult( status=OptimizationStatus.ERROR, error_message=f"Solver failed with status: {status}", execution_time=execution_time, ) except Exception as e: return OptimizationResult( status=OptimizationStatus.ERROR, error_message=f"Portfolio optimization error: {str(e)}", execution_time=time.time() - start_time, )

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/dmitryanchikov/mcp-optimizer'

If you have feedback or need assistance with the MCP directory API, please join our Discord server