Just Prompt - LLMプロバイダー向けの軽量MCPサーバー
just-prompt 、OpenAI、Anthropic、Google Gemini、Groq、DeepSeek、Ollamaといった様々な大規模言語モデル(LLM)プロバイダーへの統合インターフェースを提供するモデル制御プロトコル( ceo_and_board )サーバーです。ceo_and_boardツールを用いてo3で難しい意思決定を容易にする方法については、こちらをご覧ください。
ツール
サーバーでは次の MCP ツールが使用できます。
prompt: 複数の LLM モデルにプロンプトを送信するパラメータ:
text: プロンプトテキストmodels_prefixed_by_provider(オプション): プロバイダープレフィックスを持つモデルのリスト。指定されていない場合は、デフォルトのモデルが使用されます。
prompt_from_file: ファイルから複数の LLM モデルにプロンプトを送信するパラメータ:
file: プロンプトを含むファイルへのパスmodels_prefixed_by_provider(オプション): プロバイダープレフィックスを持つモデルのリスト。指定されていない場合は、デフォルトのモデルが使用されます。
prompt_from_file_to_file: ファイルから複数の LLM モデルにプロンプトを送信し、応答をマークダウン ファイルとして保存します。パラメータ:
file: プロンプトを含むファイルへのパスmodels_prefixed_by_provider(オプション): プロバイダープレフィックスを持つモデルのリスト。指定されていない場合は、デフォルトのモデルが使用されます。output_dir(デフォルト: "."): レスポンスマークダウンファイルを保存するディレクトリ
ceo_and_board: 複数の「取締役」モデルにプロンプトを送信し、「CEO」モデルにその応答に基づいて決定を下させるパラメータ:
file: プロンプトを含むファイルへのパスmodels_prefixed_by_provider(オプション): ボードメンバーとして機能する、プロバイダープレフィックスを持つモデルのリスト。指定されていない場合は、デフォルトのモデルが使用されます。output_dir(デフォルト: "."): 応答ファイルとCEOの決定を保存するディレクトリceo_model(デフォルト: "openai:o3"): CEO の決定に使用するモデル (形式: "provider:model")
list_providers: 利用可能なすべての LLM プロバイダーを一覧表示しますパラメータ: なし
list_models: 特定の LLM プロバイダーで利用可能なすべてのモデルを一覧表示します。パラメータ:
provider: モデルをリストするプロバイダー(例:'openai' または 'o')
Related MCP server: Library Docs MCP Server
プロバイダープレフィックス
すべてのモデルにはプロバイダー名をプレフィックスとして付ける必要があります
より速く参照するために短い名前を使用する
oまたはopenai: OpenAIo:gpt-4o-miniopenai:gpt-4o-mini
aまたはanthropic: Anthropica:claude-3-5-haikuanthropic:claude-3-5-haiku
gまたはgemini: Google Geminig:gemini-2.5-pro-exp-03-25gemini:gemini-2.5-pro-exp-03-25
qまたはgroq: Groqq:llama-3.1-70b-versatilegroq:llama-3.1-70b-versatile
dまたはdeepseek: DeepSeekd:deepseek-coderdeepseek:deepseek-coder
lまたはollama: Ollamal:llama3.1ollama:llama3.1
特徴
複数の LLM プロバイダー向けの統合 API
文字列またはファイルからのテキストプロンプトのサポート
複数のモデルを並列に実行する
--default-modelsリストの最初のモデルを使用してモデル名を自動的に修正します応答をファイルに保存する機能
利用可能なプロバイダーとモデルの簡単なリスト
インストール
環境変数
API キーを使用して.envファイルを作成します ( .env.sampleファイルをコピーできます)。
次に、 .envファイルを編集して API キーを追加します (またはシェルでエクスポートします)。
クロードコードのインストール
これらのすべての例では、ディレクトリを just-prompt ディレクトリへのパスに置き換えます。
デフォルトのモデルはopenai:o3:high 、 openai:o4-mini:high 、 anthropic:claude-3-7-sonnet-20250219:4k 、 gemini:gemini-2.5-pro-preview-03-25 、 gemini:gemini-2.5-flash-preview-04-17 。
リポジトリから直接 Claude Code を使用する場合、.mcp.json ファイルでデフォルトのモデルが次のように設定されていることがわかります...
--default-modelsパラメータは、APIエンドポイントに明示的にモデルが指定されていない場合に使用するモデルを設定します。リストの最初のモデルは、必要に応じてモデル名の修正にも使用されます。モデルはカンマ区切りで複数指定できます。
サーバーを起動すると、お使いの環境で利用可能なAPIキーが自動的に確認され、利用可能なプロバイダーが通知されます。キーが不足している場合、そのプロバイダーは利用不可として表示されますが、サーバーは起動し、利用可能なプロバイダーで使用できます。
mcp add-json使用
これをコピーして、claudeコードに貼り付けます。ただし、jsonをコピーするまでは実行しないでください。
コピーするJSON
カスタムのデフォルト モデルをopenai:gpt-4oに設定します。
複数のデフォルト モデルの場合:
プロジェクトスコープでmcp add使用する
mcp remove
クロード・MCP 削除 ジャストプロンプト
テストの実行
コードベースの構造
コンテキストプライミング
README.md、pyproject.toml を読んでから、git ls-files と 'eza --git-ignore --tree' を実行して、プロジェクトのコンテキストを理解します。
OpenAI o-Seriesによる推論の取り組み
OpenAI o シリーズ推論モデル ( o4-mini 、 o3-mini 、 o3 ) では、目に見える回答を生成する前にモデルが実行する内部推論の量を制御できます。
モデル名に、次のいずれかのサフィックスを追加します (プロバイダープレフィックスの後)。
:low– 最小限の内部推論(より速く、より安価):medium– バランスの取れた(省略時のデフォルト):high– 徹底的な推論(遅い、トークンが多い)
例:
openai:o4-mini:lowo:o4-mini:high
推論サフィックスが存在する場合、 just-prompt は自動的に OpenAI Responses API(利用可能な場合)に切り替え、対応するreasoning.effortパラメータを設定します。インストールされている OpenAI SDK が古い場合は、Chat Completions エンドポイントにフォールバックし、要求された努力レベルを概算するための内部システム指示を埋め込みます。
クロードとトークンを考える
人間中心のクロードモデルclaude-3-7-sonnet-20250219思考トークンを用いた拡張思考機能をサポートします。これにより、クロードは回答前により綿密な思考プロセスを行うことができます。
次の形式でモデル名にサフィックスを追加することで、思考トークンを有効にすることができます。
anthropic:claude-3-7-sonnet-20250219:1k- 思考トークンを1024個使用するanthropic:claude-3-7-sonnet-20250219:4k- 思考トークンを4096個使用するanthropic:claude-3-7-sonnet-20250219:8000- 思考トークンを8000個使用する
注記:
思考トークンは
claude-3-7-sonnet-20250219モデルでのみサポートされています。有効な思考トークン予算の範囲は1024から16000です
この範囲外の値は範囲内に自動的に調整されます
予算は、k 表記 (1k、4k など) または正確な数値 (1024、4096 など) で指定できます。
ジェミニと予算を考える
Google Gemini モデルgemini-2.5-flash-preview-04-17思考予算を用いた拡張思考機能をサポートしています。これにより、Gemini は回答を提示する前に、より徹底した推論を実行できます。
次の形式でモデル名にサフィックスを追加することで、Thinking Budget を有効にすることができます。
gemini:gemini-2.5-flash-preview-04-17:1k- 1024思考予算を使用するgemini:gemini-2.5-flash-preview-04-17:4k- 4096の思考予算を使用するgemini:gemini-2.5-flash-preview-04-17:8000- 8000の予算を使う
注記:
思考予算は
gemini-2.5-flash-preview-04-17モデルでのみサポートされています有効な思考予算の範囲は0~24576
この範囲外の値は範囲内に自動的に調整されます
予算は、k 表記 (1k、4k など) または正確な数値 (1024、4096 など) で指定できます。
リソース
AIコーディングをマスターする
AIコーディングの基本原則を学び、AIを使ったコーディングを学びましょう
AI コーディングのヒントやコツをもっと知りたい場合は、 IndyDevDan YouTube チャンネルをフォローしてください。