Skip to main content
Glama
devlimelabs

Meilisearch MCP Server

by devlimelabs

update-embedders

Configure embedders to enhance vector search capabilities in Meilisearch by updating JSON-based settings for specific indexes.

Instructions

Configure embedders for vector search

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
embeddersYesJSON object containing embedder configurations
indexUidYesUnique identifier of the index

Implementation Reference

  • Handler function that implements the core logic of the 'update-embedders' tool: parses embedders configuration and updates Meilisearch index settings.
    try { // Parse the embedders string to ensure it's valid JSON const parsedEmbedders = JSON.parse(embedders); // Ensure embedders is an object if (typeof parsedEmbedders !== 'object' || parsedEmbedders === null || Array.isArray(parsedEmbedders)) { return { isError: true, content: [{ type: "text", text: "Embedders must be a JSON object" }], }; } const response = await apiClient.patch(`/indexes/${indexUid}/settings/embedders`, parsedEmbedders); return { content: [{ type: "text", text: JSON.stringify(response.data, null, 2) }], }; } catch (error) { return createErrorResponse(error); } } );
  • Input schema using Zod for validating parameters indexUid and embedders for the 'update-embedders' tool.
    indexUid: z.string().describe("Unique identifier of the index"), embedders: z.string().describe("JSON object containing embedder configurations"), }, async ({ indexUid, embedders }) => {
  • Direct registration of the 'update-embedders' tool via server.tool() within the registerVectorTools function.
    "update-embedders", "Configure embedders for vector search", { indexUid: z.string().describe("Unique identifier of the index"), embedders: z.string().describe("JSON object containing embedder configurations"), }, async ({ indexUid, embedders }) => { try { // Parse the embedders string to ensure it's valid JSON const parsedEmbedders = JSON.parse(embedders); // Ensure embedders is an object if (typeof parsedEmbedders !== 'object' || parsedEmbedders === null || Array.isArray(parsedEmbedders)) { return { isError: true, content: [{ type: "text", text: "Embedders must be a JSON object" }], }; } const response = await apiClient.patch(`/indexes/${indexUid}/settings/embedders`, parsedEmbedders); return { content: [{ type: "text", text: JSON.stringify(response.data, null, 2) }], }; } catch (error) { return createErrorResponse(error); } } );
  • src/index.ts:68-68 (registration)
    Top-level registration call that invokes registerVectorTools to add vector tools (including 'update-embedders') to the main MCP server.
    registerVectorTools(server);

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/devlimelabs/meilisearch-ts-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server