Skip to main content
Glama
devlimelabs

Meilisearch MCP Server

by devlimelabs

get-embedders

Retrieve embedders configuration for a Meilisearch index to manage vector search settings and semantic capabilities.

Instructions

Get the embedders configuration for an index

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
indexUidYesUnique identifier of the index

Implementation Reference

  • The handler function that performs the core logic of fetching the embedders configuration for the specified index via the Meilisearch API endpoint.
    async ({ indexUid }) => { try { const response = await apiClient.get(`/indexes/${indexUid}/settings/embedders`); return { content: [{ type: "text", text: JSON.stringify(response.data, null, 2) }], }; } catch (error) { return createErrorResponse(error); } }
  • Input schema defining the required 'indexUid' parameter as a string.
    { indexUid: z.string().describe("Unique identifier of the index"), },
  • Registration of the 'get-embedders' tool using server.tool(), including name, description, input schema, and handler.
    server.tool( "get-embedders", "Get the embedders configuration for an index", { indexUid: z.string().describe("Unique identifier of the index"), }, async ({ indexUid }) => { try { const response = await apiClient.get(`/indexes/${indexUid}/settings/embedders`); return { content: [{ type: "text", text: JSON.stringify(response.data, null, 2) }], }; } catch (error) { return createErrorResponse(error); } } );
  • src/index.ts:68-68 (registration)
    Invocation of registerVectorTools on the main MCP server, which registers the 'get-embedders' tool along with other vector tools.
    registerVectorTools(server);

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/devlimelabs/meilisearch-ts-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server