Skip to main content
Glama

Meilisearch MCP Server

by devlimelabs
vector-tools.ts6.75 kB
import { McpServer } from '@modelcontextprotocol/sdk/server/mcp.js'; import { z } from 'zod'; import apiClient from '../utils/api-client.js'; import { createErrorResponse } from '../utils/error-handler.js'; /** * Meilisearch Vector Search Tools * * This module implements MCP tools for vector search capabilities in Meilisearch. * Note: Vector search is an experimental feature in Meilisearch. */ /** * Register vector search tools with the MCP server * * @param server - The MCP server instance */ export const registerVectorTools = (server: McpServer) => { // Enable vector search experimental feature server.tool( "enable-vector-search", "Enable the vector search experimental feature in Meilisearch", {}, async () => { try { const response = await apiClient.post('/experimental-features', { vectorStore: true, }); return { content: [{ type: "text", text: JSON.stringify(response.data, null, 2) }], }; } catch (error) { return createErrorResponse(error); } } ); // Get experimental features status server.tool( "get-experimental-features", "Get the status of experimental features in Meilisearch", {}, async () => { try { const response = await apiClient.get('/experimental-features'); return { content: [{ type: "text", text: JSON.stringify(response.data, null, 2) }], }; } catch (error) { return createErrorResponse(error); } } ); // Update embedders configuration server.tool( "update-embedders", "Configure embedders for vector search", { indexUid: z.string().describe("Unique identifier of the index"), embedders: z.string().describe("JSON object containing embedder configurations"), }, async ({ indexUid, embedders }) => { try { // Parse the embedders string to ensure it's valid JSON const parsedEmbedders = JSON.parse(embedders); // Ensure embedders is an object if (typeof parsedEmbedders !== 'object' || parsedEmbedders === null || Array.isArray(parsedEmbedders)) { return { isError: true, content: [{ type: "text", text: "Embedders must be a JSON object" }], }; } const response = await apiClient.patch(`/indexes/${indexUid}/settings/embedders`, parsedEmbedders); return { content: [{ type: "text", text: JSON.stringify(response.data, null, 2) }], }; } catch (error) { return createErrorResponse(error); } } ); // Get embedders configuration server.tool( "get-embedders", "Get the embedders configuration for an index", { indexUid: z.string().describe("Unique identifier of the index"), }, async ({ indexUid }) => { try { const response = await apiClient.get(`/indexes/${indexUid}/settings/embedders`); return { content: [{ type: "text", text: JSON.stringify(response.data, null, 2) }], }; } catch (error) { return createErrorResponse(error); } } ); // Reset embedders configuration server.tool( "reset-embedders", "Reset the embedders configuration for an index", { indexUid: z.string().describe("Unique identifier of the index"), }, async ({ indexUid }) => { try { const response = await apiClient.delete(`/indexes/${indexUid}/settings/embedders`); return { content: [{ type: "text", text: JSON.stringify(response.data, null, 2) }], }; } catch (error) { return createErrorResponse(error); } } ); // Perform vector search server.tool( "vector-search", "Perform a vector search in a Meilisearch index", { indexUid: z.string().describe("Unique identifier of the index"), vector: z.string().describe("JSON array representing the vector to search for"), limit: z.number().min(1).max(1000).optional().describe("Maximum number of results to return (default: 20)"), offset: z.number().min(0).optional().describe("Number of results to skip (default: 0)"), filter: z.string().optional().describe("Filter to apply (e.g., 'genre = horror AND year > 2020')"), embedder: z.string().optional().describe("Name of the embedder to use (if omitted, a 'vector' must be provided)"), attributes: z.array(z.string()).optional().describe("Attributes to include in the vector search"), query: z.string().optional().describe("Text query to search for (if using 'embedder' instead of 'vector')"), hybrid: z.boolean().optional().describe("Whether to perform a hybrid search (combining vector and text search)"), hybridRatio: z.number().min(0).max(1).optional().describe("Ratio of vector vs text search in hybrid search (0-1, default: 0.5)"), }, async ({ indexUid, vector, limit, offset, filter, embedder, attributes, query, hybrid, hybridRatio }) => { try { const searchParams: Record<string, any> = {}; // Add required vector parameter if (vector) { try { searchParams.vector = JSON.parse(vector); } catch (parseError) { return { isError: true, content: [{ type: "text", text: "Vector must be a valid JSON array" }], }; } } // Add embedder parameters if (embedder) { searchParams.embedder = embedder; if (query !== undefined) { searchParams.q = query; } } // Ensure we have either vector or (embedder + query) if (!vector && (!embedder || query === undefined)) { return { isError: true, content: [{ type: "text", text: "Either 'vector' or both 'embedder' and 'query' must be provided" }], }; } // Add optional parameters if (limit !== undefined) searchParams.limit = limit; if (offset !== undefined) searchParams.offset = offset; if (filter) searchParams.filter = filter; if (attributes?.length) searchParams.attributes = attributes; if (hybrid !== undefined) searchParams.hybrid = hybrid; if (hybridRatio !== undefined) searchParams.hybridRatio = hybridRatio; const response = await apiClient.post(`/indexes/${indexUid}/search`, searchParams); return { content: [{ type: "text", text: JSON.stringify(response.data, null, 2) }], }; } catch (error) { return createErrorResponse(error); } } ); }; export default registerVectorTools;

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/devlimelabs/meilisearch-ts-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server