Skip to main content
Glama

MCP Server Trello

examples.md3.46 kB
# Examples Swarm Strategy ## Common Swarm Patterns ### Research Swarm #### Using MCP Tools ```javascript // Initialize research swarm mcp__claude-flow__swarm_init({ "topology": "mesh", "maxAgents": 6, "strategy": "adaptive" }) // Spawn research agents mcp__claude-flow__agent_spawn({ "type": "researcher", "name": "AI Trends Researcher", "capabilities": ["web-search", "analysis", "synthesis"] }) // Orchestrate research mcp__claude-flow__task_orchestrate({ "task": "research AI trends", "strategy": "parallel", "priority": "medium" }) // Monitor progress mcp__claude-flow__swarm_status({ "swarmId": "research-swarm" }) ``` #### Using CLI (Fallback) ```bash npx claude-flow swarm "research AI trends" \ --strategy research \ --mode distributed \ --max-agents 6 \ --parallel ``` ### Development Swarm #### Using MCP Tools ```javascript // Initialize development swarm mcp__claude-flow__swarm_init({ "topology": "hierarchical", "maxAgents": 8, "strategy": "balanced" }) // Spawn development team const devAgents = [ { type: "architect", name: "API Designer" }, { type: "coder", name: "Backend Developer" }, { type: "tester", name: "API Tester" }, { type: "documenter", name: "API Documenter" } ] devAgents.forEach(agent => { mcp__claude-flow__agent_spawn({ "type": agent.type, "name": agent.name, "swarmId": "dev-swarm" }) }) // Orchestrate development mcp__claude-flow__task_orchestrate({ "task": "build REST API", "strategy": "sequential", "dependencies": ["design", "implement", "test", "document"] }) // Enable monitoring mcp__claude-flow__swarm_monitor({ "swarmId": "dev-swarm", "interval": 5000 }) ``` #### Using CLI (Fallback) ```bash npx claude-flow swarm "build REST API" \ --strategy development \ --mode hierarchical \ --monitor \ --output sqlite ``` ### Analysis Swarm #### Using MCP Tools ```javascript // Initialize analysis swarm mcp__claude-flow__swarm_init({ "topology": "mesh", "maxAgents": 5, "strategy": "adaptive" }) // Spawn analysis agents mcp__claude-flow__agent_spawn({ "type": "analyst", "name": "Code Analyzer", "capabilities": ["static-analysis", "complexity-analysis"] }) mcp__claude-flow__agent_spawn({ "type": "analyst", "name": "Security Analyzer", "capabilities": ["security-scan", "vulnerability-detection"] }) // Parallel analysis execution mcp__claude-flow__parallel_execute({ "tasks": [ { "id": "analyze-code", "command": "analyze codebase structure" }, { "id": "analyze-security", "command": "scan for vulnerabilities" }, { "id": "analyze-performance", "command": "identify bottlenecks" } ] }) // Generate comprehensive report mcp__claude-flow__performance_report({ "format": "detailed", "timeframe": "current" }) ``` #### Using CLI (Fallback) ```bash npx claude-flow swarm "analyze codebase" \ --strategy analysis \ --mode mesh \ --parallel \ --timeout 300 ``` ## Error Handling Examples ```javascript // Setup fault tolerance mcp__claude-flow__daa_fault_tolerance({ "agentId": "all", "strategy": "auto-recovery" }) // Handle errors gracefully try { await mcp__claude-flow__task_orchestrate({ "task": "complex operation", "strategy": "parallel" }) } catch (error) { // Check swarm health const status = await mcp__claude-flow__swarm_status({}) // Log error patterns await mcp__claude-flow__error_analysis({ "logs": [error.message] }) } ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/delorenj/mcp-server-trello'

If you have feedback or need assistance with the MCP directory API, please join our Discord server