Skip to main content
Glama

MCP Server Trello

optimization.md2.31 kB
# Optimization Swarm Strategy ## Purpose Performance optimization through specialized analysis. ## Activation ### Using MCP Tools ```javascript // Initialize optimization swarm mcp__claude-flow__swarm_init({ "topology": "mesh", "maxAgents": 6, "strategy": "adaptive" }) // Orchestrate optimization task mcp__claude-flow__task_orchestrate({ "task": "optimize performance", "strategy": "parallel", "priority": "high" }) ``` ### Using CLI (Fallback) `npx claude-flow swarm "optimize performance" --strategy optimization` ## Agent Roles ### Agent Spawning with MCP ```javascript // Spawn optimization agents mcp__claude-flow__agent_spawn({ "type": "optimizer", "name": "Performance Profiler", "capabilities": ["profiling", "bottleneck-detection"] }) mcp__claude-flow__agent_spawn({ "type": "analyst", "name": "Memory Analyzer", "capabilities": ["memory-analysis", "leak-detection"] }) mcp__claude-flow__agent_spawn({ "type": "optimizer", "name": "Code Optimizer", "capabilities": ["code-optimization", "refactoring"] }) mcp__claude-flow__agent_spawn({ "type": "tester", "name": "Benchmark Runner", "capabilities": ["benchmarking", "performance-testing"] }) ``` ## Optimization Areas ### Performance Analysis ```javascript // Analyze bottlenecks mcp__claude-flow__bottleneck_analyze({ "component": "all", "metrics": ["cpu", "memory", "io", "network"] }) // Run benchmarks mcp__claude-flow__benchmark_run({ "suite": "performance" }) // WASM optimization mcp__claude-flow__wasm_optimize({ "operation": "simd-acceleration" }) ``` ### Optimization Operations ```javascript // Optimize topology mcp__claude-flow__topology_optimize({ "swarmId": "optimization-swarm" }) // DAA optimization mcp__claude-flow__daa_optimization({ "target": "performance", "metrics": ["speed", "memory", "efficiency"] }) // Load balancing mcp__claude-flow__load_balance({ "swarmId": "optimization-swarm", "tasks": optimizationTasks }) ``` ### Monitoring and Reporting ```javascript // Performance report mcp__claude-flow__performance_report({ "format": "detailed", "timeframe": "7d" }) // Trend analysis mcp__claude-flow__trend_analysis({ "metric": "performance", "period": "30d" }) // Cost analysis mcp__claude-flow__cost_analysis({ "timeframe": "30d" }) ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/delorenj/mcp-server-trello'

If you have feedback or need assistance with the MCP directory API, please join our Discord server