Skip to main content
Glama

MCP Server Trello

analysis.md1.98 kB
# Analysis Swarm Strategy ## Purpose Comprehensive analysis through distributed agent coordination. ## Activation ### Using MCP Tools ```javascript // Initialize analysis swarm mcp__claude-flow__swarm_init({ "topology": "mesh", "maxAgents": 6, "strategy": "adaptive" }) // Orchestrate analysis task mcp__claude-flow__task_orchestrate({ "task": "analyze system performance", "strategy": "parallel", "priority": "medium" }) ``` ### Using CLI (Fallback) `npx claude-flow swarm "analyze system performance" --strategy analysis` ## Agent Roles ### Agent Spawning with MCP ```javascript // Spawn analysis agents mcp__claude-flow__agent_spawn({ "type": "analyst", "name": "Data Collector", "capabilities": ["metrics", "logging", "monitoring"] }) mcp__claude-flow__agent_spawn({ "type": "analyst", "name": "Pattern Analyzer", "capabilities": ["pattern-recognition", "anomaly-detection"] }) mcp__claude-flow__agent_spawn({ "type": "documenter", "name": "Report Generator", "capabilities": ["reporting", "visualization"] }) mcp__claude-flow__agent_spawn({ "type": "coordinator", "name": "Insight Synthesizer", "capabilities": ["synthesis", "correlation"] }) ``` ## Coordination Modes - Mesh: For exploratory analysis - Pipeline: For sequential processing - Hierarchical: For complex systems ## Analysis Operations ```javascript // Run performance analysis mcp__claude-flow__performance_report({ "format": "detailed", "timeframe": "24h" }) // Identify bottlenecks mcp__claude-flow__bottleneck_analyze({ "component": "api", "metrics": ["response-time", "throughput"] }) // Pattern recognition mcp__claude-flow__pattern_recognize({ "data": performanceData, "patterns": ["anomaly", "trend", "cycle"] }) ``` ## Status Monitoring ```javascript // Monitor analysis progress mcp__claude-flow__task_status({ "taskId": "analysis-task-001" }) // Get analysis results mcp__claude-flow__task_results({ "taskId": "analysis-task-001" }) ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/delorenj/mcp-server-trello'

If you have feedback or need assistance with the MCP directory API, please join our Discord server