Skip to main content
Glama
exit_risk.py2.28 kB
""" Exit Risk Analyzer for PitchLense MCP Package. Analyzes exit risks including exit pathways, sector exit activity, and late-stage investor appeal. """ from typing import List, Dict, Any from ..core.base import BaseRiskAnalyzer, BaseMCPTool from ..models.risk_models import RiskLevel from ..prompts import EXIT_RISK_PROMPT class ExitRiskAnalyzer(BaseRiskAnalyzer): """Exit risk analyzer implementation.""" def __init__(self, llm_client): """Initialize the exit risk analyzer.""" super().__init__(llm_client, "Exit Risks") self.risk_indicators = self.get_risk_indicators() def get_risk_indicators(self) -> List[str]: """Get the list of exit risk indicators.""" return [ "Exit Pathways Risk", "Sector Exit Activity Risk", "Late-stage Appeal Risk", "Scalability for Exit Risk", "Market Timing Risk" ] def get_analysis_prompt(self) -> str: """Get the analysis prompt for exit risks.""" return EXIT_RISK_PROMPT class ExitRiskMCPTool(BaseMCPTool): """MCP tool for exit risk analysis.""" def __init__(self): """Initialize the exit risk MCP tool.""" super().__init__("Exit Risk Analyzer", "Analyze exit risks for startups") self.analyzer = ExitRiskAnalyzer(None) # Will be set when LLM client is available def set_llm_client(self, llm_client): """Set the LLM client for the analyzer.""" self.analyzer.llm_client = llm_client def analyze_exit_risks(self, startup_data: str) -> dict: """ Analyze exit risks for a startup. Args: startup_data: Dictionary containing startup information Returns: JSON response with exit risk analysis """ if not self.validate_startup_data(startup_data): return self.create_error_response("Invalid startup data format") try: return self.analyzer.analyze(startup_data) except Exception as e: return self.create_error_response(f"Analysis failed: {str(e)}") def register_tools(self): """Register MCP tools.""" self.register_tool(self.analyze_exit_risks)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/connectaman/Pitchlense-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server