"""
Financial Risk Analyzer for PitchLense MCP Package.
Analyzes financial risks including metrics consistency, burn rate, projections, CAC/LTV ratio, and profitability path.
"""
from typing import List, Dict, Any
from ..core.base import BaseRiskAnalyzer, BaseMCPTool
from ..models.risk_models import RiskLevel
from ..prompts import FINANCIAL_RISK_PROMPT
class FinancialRiskAnalyzer(BaseRiskAnalyzer):
"""Financial risk analyzer implementation."""
def __init__(self, llm_client):
"""Initialize the financial risk analyzer."""
super().__init__(llm_client, "Financial Risks")
self.risk_indicators = self.get_risk_indicators()
def get_risk_indicators(self) -> List[str]:
"""Get the list of financial risk indicators."""
return [
"Metrics Consistency Risk",
"Burn Rate & Runway Risk",
"Projection Realism Risk",
"CAC vs LTV Risk",
"Profitability Path Risk",
"Funding Dependence Risk"
]
def get_analysis_prompt(self) -> str:
"""Get the analysis prompt for financial risks."""
return FINANCIAL_RISK_PROMPT
class FinancialRiskMCPTool(BaseMCPTool):
"""MCP tool for financial risk analysis."""
def __init__(self):
"""Initialize the financial risk MCP tool."""
super().__init__("Financial Risk Analyzer", "Analyze financial risks for startups")
self.analyzer = FinancialRiskAnalyzer(None) # Will be set when LLM client is available
def set_llm_client(self, llm_client):
"""Set the LLM client for the analyzer."""
self.analyzer.llm_client = llm_client
def analyze_financial_risks(self, startup_data: str) -> dict:
"""
Analyze financial risks for a startup.
Args:
startup_data: Dictionary containing startup information
Returns:
JSON response with financial risk analysis
"""
if not self.validate_startup_data(startup_data):
return self.create_error_response("Invalid startup data format")
try:
return self.analyzer.analyze(startup_data)
except Exception as e:
return self.create_error_response(f"Analysis failed: {str(e)}")
def register_tools(self):
"""Register MCP tools."""
self.register_tool(self.analyze_financial_risks)