Skip to main content
Glama

PitchLense MCP

PitchLense MCP - Professional Startup Risk Analysis Package

Python Version Python docs License: MIT PyPI Version Build Status

A comprehensive Model Context Protocol (MCP) package for analyzing startup investment risks using AI-powered assessment across multiple risk categories. Built with FastMCP and Google Gemini AI.

PitchLense is a comprehensive AI-powered startup analysis platform that provides detailed risk assessment and growth potential evaluation for early-stage ventures. The platform analyzes multiple dimensions of startup risk and provides actionable insights for investors, founders, and stakeholders.

๐Ÿ”— Quick Links

YouTube Tutorial AppWebsite GitHub Repository MCP Repository PyPI Package Documentation

๐Ÿ“– How to Use PitchLense

Watch our comprehensive tutorial video to learn how to use PitchLense effectively:

How to use PitchLense

Click the image above to watch the tutorial on YouTube

๐Ÿš€ Features

Individual Risk Analysis Tools

  • Market Risk Analyzer - TAM, growth rate, competition, differentiation

  • Product Risk Analyzer - Development stage, market fit, technical feasibility, IP protection

  • Team Risk Analyzer - Leadership depth, founder stability, skill gaps, credibility

  • Financial Risk Analyzer - Metrics consistency, burn rate, projections, CAC/LTV

  • Customer Risk Analyzer - Traction levels, churn rate, retention, customer concentration

  • Operational Risk Analyzer - Supply chain, GTM strategy, efficiency, execution

  • Competitive Risk Analyzer - Incumbent strength, entry barriers, defensibility

  • Legal Risk Analyzer - Regulatory environment, compliance, legal disputes

  • Exit Risk Analyzer - Exit pathways, sector activity, late-stage appeal

Comprehensive Analysis Tools & Data Sources

  • Comprehensive Risk Scanner - Full analysis across all risk categories

  • Quick Risk Assessment - Fast assessment of critical risk areas

  • Peer Benchmarking - Compare metrics against sector/stage peers

  • SerpAPI Google News Tool - Fetches first-page Google News with URLs and thumbnails

  • Perplexity Search Tool - Answers with cited sources and URLs

๐Ÿ“Š Risk Categories Covered

Category

Key risks

Market

Small/overstated TAM; weak growth; crowded space; limited differentiation; niche dependence

Product

Early stage; unclear PMF; technical uncertainty; weak IP; poor scalability

Team/Founder

Single-founder risk; churn; skill gaps; credibility; misaligned incentives

Financial

Inconsistent metrics; high burn/short runway; optimistic projections; unfavorable CAC/LTV; low margins

Customer & Traction

Low traction; high churn; low retention; no marquee customers; concentration risk

Operational

Fragile supply chain; unclear GTM; operational inefficiency; poor execution

Competitive

Strong incumbents; low entry barriers; weak defensibility; saturation

Legal & Regulatory

Grey/untested areas; compliance gaps; disputes; IP risks

Exit

Unclear pathways; low sector exit activity; weak lateโ€‘stage appeal

๐Ÿ› ๏ธ Installation

From PyPI (Recommended)

pip install pitchlense-mcp

From Source

git clone https://github.com/pitchlense/pitchlense-mcp.git cd pitchlense-mcp pip install -e .

Development Installation

git clone https://github.com/pitchlense/pitchlense-mcp.git cd pitchlense-mcp pip install -e ".[dev]"

๐Ÿ”‘ Setup

1. Get Gemini API Key

  1. Visit Google AI Studio

  2. Create a new API key

  3. Copy the API key

2. Create .env

cp .env.template .env # edit .env and fill in keys

Supported variables:

GEMINI_API_KEY= SERPAPI_API_KEY= PERPLEXITY_API_KEY=

๐Ÿš€ Usage

Command Line Interface

Run Comprehensive Analysis

# Create sample data pitchlense-mcp sample --output my_startup.json # Run comprehensive analysis pitchlense-mcp analyze --input my_startup.json --output results.json

Run Quick Assessment

pitchlense-mcp quick --input my_startup.json --output quick_results.json

Start MCP Server

pitchlense-mcp server

Python API

Basic Usage (single text input)

from pitchlense_mcp import ComprehensiveRiskScanner # Initialize scanner (reads GEMINI_API_KEY from env if not provided) scanner = ComprehensiveRiskScanner() # Provide all startup info as one organized text string startup_info = """ Name: TechFlow Solutions Industry: SaaS/Productivity Software Stage: Series A Business Model: AI-powered workflow automation for SMBs; subscription pricing. Financials: MRR: $45k; Burn: $35k; Runway: 8 months; LTV/CAC: 13.3 Traction: 250 customers; 1,200 MAU; Churn: 5% monthly; NRR: 110% Team: CEO: Sarah Chen; CTO: Michael Rodriguez; Team size: 12 Market & Competition: TAM: $12B; Competitors: Zapier, Power Automate; Growth: 15% YoY """ # Run comprehensive analysis results = scanner.comprehensive_startup_risk_analysis(startup_info) print(f"Overall Risk Level: {results['overall_risk_level']}") print(f"Overall Risk Score: {results['overall_score']}/10") print(f"Investment Recommendation: {results['investment_recommendation']}")

Individual Risk Analysis (text input)

from pitchlense_mcp import MarketRiskAnalyzer, GeminiLLM # Initialize components llm_client = GeminiLLM(api_key="your_api_key") market_analyzer = MarketRiskAnalyzer(llm_client) # Analyze market risks market_results = market_analyzer.analyze(startup_info) print(f"Market Risk Level: {market_results['overall_risk_level']}")

MCP Server Integration

The package provides a complete MCP server that can be integrated with MCP-compatible clients:

from pitchlense_mcp import ComprehensiveRiskScanner # Start MCP server scanner = ComprehensiveRiskScanner() scanner.run()

๐Ÿ“‹ Input Data Format

The primary input is a single organized text string containing all startup information (details, metrics, traction, news, competitive landscape, etc.). This is the format used by all analyzers and MCP tools.

Example text input:

Name: AcmeAI Industry: Fintech (Lending) Stage: Seed Summary: Building AI-driven credit risk models for SMB lending; initial pilots with 5 lenders. Financials: MRR: $12k; Burn: $60k; Runway: 10 months; Gross Margin: 78% Traction: 200 paying SMBs; 30% MoM growth; Churn: 3% monthly; CAC: $220; LTV: $2,100 Team: Founders: Jane Doe (ex-Square), John Lee (ex-Stripe); Team size: 9 Market & Competition: TAM: $25B; Competitors: Blend, Upstart; Advantage: faster underwriting via proprietary data partnerships

Tip: See examples/text_input_example.py for a complete end-to-end script and JSON export of results.

๐Ÿ“Š Output Format

All tools return structured JSON responses with:

{ "startup_name": "Startup Name", "overall_risk_level": "low|medium|high|critical", "overall_score": 1-10, "risk_categories": [ { "category_name": "Risk Category", "overall_risk_level": "low|medium|high|critical", "category_score": 1-10, "indicators": [ { "indicator": "Specific risk factor", "risk_level": "low|medium|high|critical", "score": 1-10, "description": "Detailed risk description", "recommendation": "Mitigation action" } ], "summary": "Category summary" } ], "key_concerns": ["Top 5 concerns"], "investment_recommendation": "Investment advice", "confidence_score": 0.0-1.0, "analysis_metadata": { "total_categories_analyzed": 9, "successful_analyses": 9, "analysis_timestamp": "2024-01-01T00:00:00Z" } }

๐ŸŽฏ Use Cases

  • Investor Due Diligence - Comprehensive risk assessment for investment decisions

  • Startup Self-Assessment - Identify and mitigate key risk areas

  • Portfolio Risk Management - Assess risk across startup portfolio

  • Accelerator/Incubator Screening - Evaluate startup applications

  • M&A Risk Analysis - Assess acquisition targets

  • Research & Analysis - Academic and industry research on startup risks

๐Ÿ—๏ธ Architecture

Package Structure

pitchlense-mcp/ โ”œโ”€โ”€ pitchlense_mcp/ โ”‚ โ”œโ”€โ”€ __init__.py โ”‚ โ”œโ”€โ”€ cli.py # Command-line interface โ”‚ โ”œโ”€โ”€ core/ # Core functionality โ”‚ โ”‚ โ”œโ”€โ”€ __init__.py โ”‚ โ”‚ โ”œโ”€โ”€ base.py # Base classes โ”‚ โ”‚ โ”œโ”€โ”€ gemini_client.py # Gemini AI integration โ”‚ โ”‚ โ””โ”€โ”€ comprehensive_scanner.py โ”‚ โ”œโ”€โ”€ models/ # Data models โ”‚ โ”‚ โ”œโ”€โ”€ __init__.py โ”‚ โ”‚ โ””โ”€โ”€ risk_models.py โ”‚ โ”œโ”€โ”€ analyzers/ # Individual risk analyzers โ”‚ โ”‚ โ”œโ”€โ”€ __init__.py โ”‚ โ”‚ โ”œโ”€โ”€ market_risk.py โ”‚ โ”‚ โ”œโ”€โ”€ product_risk.py โ”‚ โ”‚ โ”œโ”€โ”€ team_risk.py โ”‚ โ”‚ โ”œโ”€โ”€ financial_risk.py โ”‚ โ”‚ โ”œโ”€โ”€ customer_risk.py โ”‚ โ”‚ โ”œโ”€โ”€ operational_risk.py โ”‚ โ”‚ โ”œโ”€โ”€ competitive_risk.py โ”‚ โ”‚ โ”œโ”€โ”€ legal_risk.py โ”‚ โ”‚ โ””โ”€โ”€ exit_risk.py โ”‚ โ””โ”€โ”€ utils/ # Utility functions โ”œโ”€โ”€ tests/ # Test suite โ”œโ”€โ”€ docs/ # Documentation โ”œโ”€โ”€ examples/ # Example usage โ”œโ”€โ”€ setup.py โ”œโ”€โ”€ pyproject.toml โ”œโ”€โ”€ requirements.txt โ””โ”€โ”€ README.md

Key Components

  1. Base Classes (core/base.py)

    • BaseLLM - Abstract base for LLM integrations

    • BaseRiskAnalyzer - Base class for all risk analyzers

    • BaseMCPTool - Base class for MCP tools

  2. Gemini Integration (core/gemini_client.py)

    • GeminiLLM - Main LLM client

    • GeminiTextGenerator - Text generation

    • GeminiImageAnalyzer - Image analysis

    • GeminiVideoAnalyzer - Video analysis

    • GeminiAudioAnalyzer - Audio analysis

    • GeminiDocumentAnalyzer - Document analysis

  3. Risk Analyzers (analyzers/)

    • Individual analyzers for each risk category

    • Consistent interface and output format

    • Extensible architecture

  4. Models (models/risk_models.py)

    • Pydantic models for type safety

    • Structured data validation

    • Clear data contracts

๐Ÿ”ง Development

Setup Development Environment

git clone https://github.com/pitchlense/pitchlense-mcp.git cd pitchlense-mcp pip install -e ".[dev]" pre-commit install

Run Tests

# Create and activate a virtual environment (recommended) python3 -m venv .venv source .venv/bin/activate # Install dev extras (pytest, pytest-cov, linters) pip install -e ".[dev]" # Run tests with coverage and avoid global plugin conflicts PYTEST_DISABLE_PLUGIN_AUTOLOAD=1 pytest -q -p pytest_cov

Notes:

  • Coverage reports are written to htmlcov/index.html and coverage.xml.

  • If you see errors about unknown --cov options, ensure you passed -p pytest_cov when PYTEST_DISABLE_PLUGIN_AUTOLOAD=1 is set.

Example Scripts

python examples/basic_usage.py python examples/text_input_example.py

Code Formatting

black pitchlense_mcp/ flake8 pitchlense_mcp/ mypy pitchlense_mcp/

Build Package

python -m build

๐Ÿ“ Notes

  • All risk scores are on a 1-10 scale (1 = lowest risk, 10 = highest risk)

  • Risk levels: low (1-3), medium (4-6), high (7-8), critical (9-10)

  • Individual tools can be used independently or combined for comprehensive analysis

  • The system handles API failures gracefully with fallback responses

  • All tables and structured data are returned in JSON format

  • Professional package architecture with proper separation of concerns

๐Ÿค Contributing

We welcome contributions! Please see our Contributing Guide for details.

  1. Fork the repository

  2. Create a feature branch

  3. Make your changes

  4. Add tests

  5. Submit a pull request

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ†˜ Support

๐Ÿ™ Acknowledgments

  • Google Gemini AI for providing the underlying AI capabilities

  • FastMCP for the Model Context Protocol implementation

  • The open-source community for inspiration and tools


PitchLense MCP - Making startup risk analysis accessible, comprehensive, and AI-powered.

-
security - not tested
A
license - permissive license
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

Enables comprehensive AI-powered startup investment risk analysis across 9 categories including market, product, team, financial, customer, operational, competitive, legal, and exit risks. Provides structured risk assessments, peer benchmarking, and investment recommendations using Google Gemini AI.

  1. ๐Ÿ”— Quick Links
    1. ๐Ÿ“– How to Use PitchLense
  2. ๐Ÿš€ Features
    1. Individual Risk Analysis Tools
    2. Comprehensive Analysis Tools & Data Sources
  3. ๐Ÿ“Š Risk Categories Covered
    1. ๐Ÿ› ๏ธ Installation
      1. From PyPI (Recommended)
      2. From Source
      3. Development Installation
    2. ๐Ÿ”‘ Setup
      1. 1. Get Gemini API Key
      2. 2. Create .env
    3. ๐Ÿš€ Usage
      1. Command Line Interface
      2. Python API
      3. MCP Server Integration
    4. ๐Ÿ“‹ Input Data Format
      1. ๐Ÿ“Š Output Format
        1. ๐ŸŽฏ Use Cases
          1. ๐Ÿ—๏ธ Architecture
            1. Package Structure
            2. Key Components
          2. ๐Ÿ”ง Development
            1. Setup Development Environment
            2. Run Tests
            3. Example Scripts
            4. Code Formatting
            5. Build Package
          3. ๐Ÿ“ Notes
            1. ๐Ÿค Contributing
              1. ๐Ÿ“„ License
                1. ๐Ÿ†˜ Support
                  1. ๐Ÿ™ Acknowledgments

                    MCP directory API

                    We provide all the information about MCP servers via our MCP API.

                    curl -X GET 'https://glama.ai/api/mcp/v1/servers/connectaman/Pitchlense-mcp'

                    If you have feedback or need assistance with the MCP directory API, please join our Discord server