Skip to main content
Glama

chroma_query_documents

Search and retrieve documents from a Chroma collection using text queries, metadata filters, and advanced content operators for precise results.

Instructions

Query documents from a Chroma collection with advanced filtering.

Args: collection_name: Name of the collection to query query_texts: List of query texts to search for n_results: Number of results to return per query where: Optional metadata filters using Chroma's query operators Examples: - Simple equality: {"metadata_field": "value"} - Comparison: {"metadata_field": {"$gt": 5}} - Logical AND: {"$and": [{"field1": {"$eq": "value1"}}, {"field2": {"$gt": 5}}]} - Logical OR: {"$or": [{"field1": {"$eq": "value1"}}, {"field1": {"$eq": "value2"}}]} where_document: Optional document content filters Examples: - Contains: {"$contains": "value"} - Not contains: {"$not_contains": "value"} - Regex: {"$regex": "[a-z]+"} - Not regex: {"$not_regex": "[a-z]+"} - Logical AND: {"$and": [{"$contains": "value1"}, {"$not_regex": "[a-z]+"}]} - Logical OR: {"$or": [{"$regex": "[a-z]+"}, {"$not_contains": "value2"}]} include: List of what to include in response. By default, this will include documents, metadatas, and distances.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
collection_nameYes
includeNo
n_resultsNo
query_textsYes
whereNo
where_documentNo

Implementation Reference

  • The main handler function for the 'chroma_query_documents' tool. Decorated with @mcp.tool(), which handles both registration and schema definition (from type hints and docstring). Implements querying Chroma collection using query_texts with optional filters and includes.
    @mcp.tool() async def chroma_query_documents( collection_name: str, query_texts: List[str], n_results: int = 5, where: Dict | None = None, where_document: Dict | None = None, include: List[str] = ["documents", "metadatas", "distances"] ) -> Dict: """Query documents from a Chroma collection with advanced filtering. Args: collection_name: Name of the collection to query query_texts: List of query texts to search for n_results: Number of results to return per query where: Optional metadata filters using Chroma's query operators Examples: - Simple equality: {"metadata_field": "value"} - Comparison: {"metadata_field": {"$gt": 5}} - Logical AND: {"$and": [{"field1": {"$eq": "value1"}}, {"field2": {"$gt": 5}}]} - Logical OR: {"$or": [{"field1": {"$eq": "value1"}}, {"field1": {"$eq": "value2"}}]} where_document: Optional document content filters Examples: - Contains: {"$contains": "value"} - Not contains: {"$not_contains": "value"} - Regex: {"$regex": "[a-z]+"} - Not regex: {"$not_regex": "[a-z]+"} - Logical AND: {"$and": [{"$contains": "value1"}, {"$not_regex": "[a-z]+"}]} - Logical OR: {"$or": [{"$regex": "[a-z]+"}, {"$not_contains": "value2"}]} include: List of what to include in response. By default, this will include documents, metadatas, and distances. """ if not query_texts: raise ValueError("The 'query_texts' list cannot be empty.") client = get_chroma_client() try: collection = client.get_collection(collection_name) return collection.query( query_texts=query_texts, n_results=n_results, where=where, where_document=where_document, include=include ) except Exception as e: raise Exception(f"Failed to query documents from collection '{collection_name}': {str(e)}") from e
  • The @mcp.tool() decorator registers the function as an MCP tool.
    @mcp.tool() async def chroma_query_documents( collection_name: str, query_texts: List[str], n_results: int = 5, where: Dict | None = None, where_document: Dict | None = None, include: List[str] = ["documents", "metadatas", "distances"] ) -> Dict: """Query documents from a Chroma collection with advanced filtering. Args: collection_name: Name of the collection to query query_texts: List of query texts to search for n_results: Number of results to return per query where: Optional metadata filters using Chroma's query operators Examples: - Simple equality: {"metadata_field": "value"} - Comparison: {"metadata_field": {"$gt": 5}} - Logical AND: {"$and": [{"field1": {"$eq": "value1"}}, {"field2": {"$gt": 5}}]} - Logical OR: {"$or": [{"field1": {"$eq": "value1"}}, {"field1": {"$eq": "value2"}}]} where_document: Optional document content filters Examples: - Contains: {"$contains": "value"} - Not contains: {"$not_contains": "value"} - Regex: {"$regex": "[a-z]+"} - Not regex: {"$not_regex": "[a-z]+"} - Logical AND: {"$and": [{"$contains": "value1"}, {"$not_regex": "[a-z]+"}]} - Logical OR: {"$or": [{"$regex": "[a-z]+"}, {"$not_contains": "value2"}]} include: List of what to include in response. By default, this will include documents, metadatas, and distances. """ if not query_texts: raise ValueError("The 'query_texts' list cannot be empty.") client = get_chroma_client() try: collection = client.get_collection(collection_name) return collection.query( query_texts=query_texts, n_results=n_results, where=where, where_document=where_document, include=include ) except Exception as e: raise Exception(f"Failed to query documents from collection '{collection_name}': {str(e)}") from e

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/chroma-core/chroma-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server