Skip to main content
Glama

PubMed MCP Server

by chrismannina
README.md8.68 kB
# PubMed MCP Server [![CI](https://github.com/chrismannina/pubmed-mcp/actions/workflows/ci.yml/badge.svg)](https://github.com/chrismannina/pubmed-mcp/actions/workflows/ci.yml) A comprehensive Model Context Protocol (MCP) server for PubMed literature search and management. This server provides advanced search capabilities, citation formatting, and research analysis tools through the MCP protocol. <a href="https://glama.ai/mcp/servers/@chrismannina/pubmed-mcp"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@chrismannina/pubmed-mcp/badge" alt="PubMed Server MCP server" /> </a> ## Features - **Advanced PubMed Search**: Search with complex filters including date ranges, article types, authors, journals, and MeSH terms - **Article Details**: Retrieve detailed information for specific PMIDs including abstracts, authors, and metadata - **Citation Export**: Export citations in multiple formats (BibTeX, APA, MLA, Chicago, Vancouver, EndNote, RIS) - **Author Search**: Find articles by specific authors with co-author information - **Related Articles**: Discover articles related to a specific PMID - **MeSH Term Search**: Search and explore Medical Subject Headings - **Journal Analysis**: Get metrics and recent articles from specific journals - **Research Trends**: Analyze publication trends over time - **Article Comparison**: Compare multiple articles side by side - **Caching**: Built-in caching for improved performance - **Rate Limiting**: Respectful API usage with configurable rate limits ## Installation ### Prerequisites - Python 3.8 or higher - NCBI API key (free registration required) - Valid email address for NCBI API identification ### Quick Start 1. **Clone the repository:** ```bash git clone https://github.com/your-org/pubmed-mcp.git cd pubmed-mcp ``` 2. **Install dependencies:** ```bash pip install -r requirements.txt ``` 3. **Set up environment variables:** ```bash cp env.example .env # Edit .env with your NCBI API key and email ``` 4. **Run the server:** ```bash python -m src.main ``` ### Development Installation For development with additional tools: ```bash make install-dev ``` Or manually: ```bash pip install -r requirements.txt pip install -e . pip install black isort mypy flake8 ``` ## Configuration Create a `.env` file in the project root with the following variables: ```env # Required PUBMED_API_KEY=your_ncbi_api_key_here PUBMED_EMAIL=your.email@example.com # Optional CACHE_TTL=300 CACHE_MAX_SIZE=1000 RATE_LIMIT=3.0 LOG_LEVEL=info ``` ### Getting an NCBI API Key 1. Visit [NCBI Account Settings](https://www.ncbi.nlm.nih.gov/account/settings/) 2. Sign in or create an account 3. Navigate to "API Key Management" 4. Create a new API key 5. Copy the key to your `.env` file ## Usage ### Available Tools The server provides the following MCP tools: #### 1. `search_pubmed` Search PubMed with advanced filtering options. ```json { "query": "machine learning healthcare", "max_results": 20, "date_range": "5y", "article_types": ["Journal Article", "Review"], "has_abstract": true } ``` #### 2. `get_article_details` Get detailed information for specific PMIDs. ```json { "pmids": ["12345678", "87654321"], "include_abstracts": true, "include_citations": false } ``` #### 3. `search_by_author` Search for articles by a specific author. ```json { "author_name": "Smith J", "max_results": 10, "include_coauthors": true } ``` #### 4. `export_citations` Export citations in various formats. ```json { "pmids": ["12345678"], "format": "bibtex", "include_abstracts": false } ``` #### 5. `find_related_articles` Find articles related to a specific PMID. ```json { "pmid": "12345678", "max_results": 10 } ``` #### 6. `search_mesh_terms` Search using MeSH terms. ```json { "term": "Machine Learning", "max_results": 20 } ``` #### 7. `analyze_research_trends` Analyze publication trends over time. ```json { "topic": "artificial intelligence", "years_back": 5, "include_subtopics": false } ``` ### Example Usage with MCP Client ```python import asyncio from mcp import ClientSession, StdioServerParameters from mcp.client.stdio import stdio_client async def main(): server_params = StdioServerParameters( command="python", args=["-m", "src.main"] ) async with stdio_client(server_params) as (read, write): async with ClientSession(read, write) as session: # Initialize the session await session.initialize() # Search PubMed result = await session.call_tool( "search_pubmed", { "query": "COVID-19 vaccines", "max_results": 5, "date_range": "1y" } ) print(result.content[0].text) if __name__ == "__main__": asyncio.run(main()) ``` ## Development ### Running Tests ```bash # Run all tests make test # Run with coverage make test-coverage # Run specific test types python run_tests.py unit python run_tests.py integration python run_tests.py coverage ``` ### Code Quality ```bash # Format code make format # Run linting make lint # Type checking mypy src/ ``` ### Project Structure ``` pubmed-mcp/ ├── src/ │ ├── __init__.py │ ├── main.py # Entry point │ ├── server.py # MCP server implementation │ ├── models.py # Pydantic models │ ├── pubmed_client.py # PubMed API client │ ├── tool_handler.py # Tool request handlers │ ├── citation_formatter.py # Citation formatting │ ├── tools.py # Tool definitions │ └── utils.py # Utility functions ├── tests/ # Test suite ├── requirements.txt # Dependencies ├── setup.py # Package setup ├── pyproject.toml # Modern Python config ├── Makefile # Development commands ├── Dockerfile # Container setup └── README.md # This file ``` ## Docker ### Build and Run ```bash # Build Docker image make docker-build # Run with environment variables make docker-run PUBMED_API_KEY=your_key PUBMED_EMAIL=your_email ``` ### Docker Compose ```yaml version: '3.8' services: pubmed-mcp: build: . environment: - PUBMED_API_KEY=your_key - PUBMED_EMAIL=your_email - LOG_LEVEL=info volumes: - ./data:/app/data ``` ## API Reference ### Search Parameters - `query`: Search query using PubMed syntax - `max_results`: Maximum number of results (1-200) - `sort_order`: Sort order (relevance, pub_date, author, journal, title) - `date_from`/`date_to`: Date range filters - `date_range`: Predefined ranges (1y, 5y, 10y, all) - `article_types`: Filter by publication types - `authors`: Filter by author names - `journals`: Filter by journal names - `mesh_terms`: Filter by MeSH terms - `language`: Language filter (e.g., 'eng', 'fre') - `has_abstract`: Only articles with abstracts - `has_full_text`: Only articles with full text - `humans_only`: Only human studies ### Citation Formats - `bibtex`: BibTeX format - `apa`: APA style - `mla`: MLA style - `chicago`: Chicago style - `vancouver`: Vancouver style - `endnote`: EndNote format - `ris`: RIS format ## Contributing 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests for new functionality 5. Run the test suite 6. Submit a pull request ### Development Guidelines - Follow PEP 8 style guidelines - Add type hints to all functions - Write comprehensive tests - Update documentation for new features - Use conventional commit messages ## License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## Support - **Issues**: [GitHub Issues](https://github.com/your-org/pubmed-mcp/issues) - **Documentation**: [Project Wiki](https://github.com/your-org/pubmed-mcp/wiki) - **Discussions**: [GitHub Discussions](https://github.com/your-org/pubmed-mcp/discussions) ## Acknowledgments - [NCBI E-utilities](https://www.ncbi.nlm.nih.gov/books/NBK25501/) for PubMed API access - [Model Context Protocol](https://modelcontextprotocol.io/) for the MCP specification - [Anthropic](https://www.anthropic.com/) for MCP development and support ## Changelog See [CHANGELOG.md](CHANGELOG.md) for a detailed history of changes. --- **Note**: This server requires a valid NCBI API key and follows NCBI's usage guidelines. Please be respectful of API rate limits and terms of service.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/chrismannina/pubmed-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server