Skip to main content
Glama

PubMed MCP Server

by chrismannina

PubMed MCP Server

A comprehensive Model Context Protocol (MCP) server for PubMed literature search and management. This server provides advanced search capabilities, citation formatting, and research analysis tools through the MCP protocol.

Features

  • Advanced PubMed Search: Search with complex filters including date ranges, article types, authors, journals, and MeSH terms
  • Article Details: Retrieve detailed information for specific PMIDs including abstracts, authors, and metadata
  • Citation Export: Export citations in multiple formats (BibTeX, APA, MLA, Chicago, Vancouver, EndNote, RIS)
  • Author Search: Find articles by specific authors with co-author information
  • Related Articles: Discover articles related to a specific PMID
  • MeSH Term Search: Search and explore Medical Subject Headings
  • Journal Analysis: Get metrics and recent articles from specific journals
  • Research Trends: Analyze publication trends over time
  • Article Comparison: Compare multiple articles side by side
  • Caching: Built-in caching for improved performance
  • Rate Limiting: Respectful API usage with configurable rate limits

Installation

Prerequisites

  • Python 3.8 or higher
  • NCBI API key (free registration required)
  • Valid email address for NCBI API identification

Quick Start

  1. Clone the repository:
    git clone https://github.com/your-org/pubmed-mcp.git cd pubmed-mcp
  2. Install dependencies:
    pip install -r requirements.txt
  3. Set up environment variables:
    cp env.example .env # Edit .env with your NCBI API key and email
  4. Run the server:
    python -m src.main

Development Installation

For development with additional tools:

make install-dev

Or manually:

pip install -r requirements.txt pip install -e . pip install black isort mypy flake8

Configuration

Create a .env file in the project root with the following variables:

# Required PUBMED_API_KEY=your_ncbi_api_key_here PUBMED_EMAIL=your.email@example.com # Optional CACHE_TTL=300 CACHE_MAX_SIZE=1000 RATE_LIMIT=3.0 LOG_LEVEL=info

Getting an NCBI API Key

  1. Visit NCBI Account Settings
  2. Sign in or create an account
  3. Navigate to "API Key Management"
  4. Create a new API key
  5. Copy the key to your .env file

Usage

Available Tools

The server provides the following MCP tools:

1. search_pubmed

Search PubMed with advanced filtering options.

{ "query": "machine learning healthcare", "max_results": 20, "date_range": "5y", "article_types": ["Journal Article", "Review"], "has_abstract": true }
2. get_article_details

Get detailed information for specific PMIDs.

{ "pmids": ["12345678", "87654321"], "include_abstracts": true, "include_citations": false }
3. search_by_author

Search for articles by a specific author.

{ "author_name": "Smith J", "max_results": 10, "include_coauthors": true }
4. export_citations

Export citations in various formats.

{ "pmids": ["12345678"], "format": "bibtex", "include_abstracts": false }

Find articles related to a specific PMID.

{ "pmid": "12345678", "max_results": 10 }
6. search_mesh_terms

Search using MeSH terms.

{ "term": "Machine Learning", "max_results": 20 }

Analyze publication trends over time.

{ "topic": "artificial intelligence", "years_back": 5, "include_subtopics": false }

Example Usage with MCP Client

import asyncio from mcp import ClientSession, StdioServerParameters from mcp.client.stdio import stdio_client async def main(): server_params = StdioServerParameters( command="python", args=["-m", "src.main"] ) async with stdio_client(server_params) as (read, write): async with ClientSession(read, write) as session: # Initialize the session await session.initialize() # Search PubMed result = await session.call_tool( "search_pubmed", { "query": "COVID-19 vaccines", "max_results": 5, "date_range": "1y" } ) print(result.content[0].text) if __name__ == "__main__": asyncio.run(main())

Development

Running Tests

# Run all tests make test # Run with coverage make test-coverage # Run specific test types python run_tests.py unit python run_tests.py integration python run_tests.py coverage

Code Quality

# Format code make format # Run linting make lint # Type checking mypy src/

Project Structure

pubmed-mcp/ ├── src/ │ ├── __init__.py │ ├── main.py # Entry point │ ├── server.py # MCP server implementation │ ├── models.py # Pydantic models │ ├── pubmed_client.py # PubMed API client │ ├── tool_handler.py # Tool request handlers │ ├── citation_formatter.py # Citation formatting │ ├── tools.py # Tool definitions │ └── utils.py # Utility functions ├── tests/ # Test suite ├── requirements.txt # Dependencies ├── setup.py # Package setup ├── pyproject.toml # Modern Python config ├── Makefile # Development commands ├── Dockerfile # Container setup └── README.md # This file

Docker

Build and Run

# Build Docker image make docker-build # Run with environment variables make docker-run PUBMED_API_KEY=your_key PUBMED_EMAIL=your_email

Docker Compose

version: '3.8' services: pubmed-mcp: build: . environment: - PUBMED_API_KEY=your_key - PUBMED_EMAIL=your_email - LOG_LEVEL=info volumes: - ./data:/app/data

API Reference

Search Parameters

  • query: Search query using PubMed syntax
  • max_results: Maximum number of results (1-200)
  • sort_order: Sort order (relevance, pub_date, author, journal, title)
  • date_from/date_to: Date range filters
  • date_range: Predefined ranges (1y, 5y, 10y, all)
  • article_types: Filter by publication types
  • authors: Filter by author names
  • journals: Filter by journal names
  • mesh_terms: Filter by MeSH terms
  • language: Language filter (e.g., 'eng', 'fre')
  • has_abstract: Only articles with abstracts
  • has_full_text: Only articles with full text
  • humans_only: Only human studies

Citation Formats

  • bibtex: BibTeX format
  • apa: APA style
  • mla: MLA style
  • chicago: Chicago style
  • vancouver: Vancouver style
  • endnote: EndNote format
  • ris: RIS format

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Run the test suite
  6. Submit a pull request

Development Guidelines

  • Follow PEP 8 style guidelines
  • Add type hints to all functions
  • Write comprehensive tests
  • Update documentation for new features
  • Use conventional commit messages

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support

Acknowledgments

Changelog

See CHANGELOG.md for a detailed history of changes.


Note: This server requires a valid NCBI API key and follows NCBI's usage guidelines. Please be respectful of API rate limits and terms of service.

-
security - not tested
A
license - permissive license
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

A comprehensive Model Context Protocol server that enables advanced PubMed literature search, citation formatting, and research analysis through natural language interactions.

  1. Features
    1. Installation
      1. Prerequisites
      2. Quick Start
      3. Development Installation
    2. Configuration
      1. Getting an NCBI API Key
    3. Usage
      1. Available Tools
      2. Example Usage with MCP Client
    4. Development
      1. Running Tests
      2. Code Quality
      3. Project Structure
    5. Docker
      1. Build and Run
      2. Docker Compose
    6. API Reference
      1. Search Parameters
      2. Citation Formats
    7. Contributing
      1. Development Guidelines
    8. License
      1. Support
        1. Acknowledgments
          1. Changelog

            Related MCP Servers

            • -
              security
              F
              license
              -
              quality
              An MCP server implementation that enables searching and retrieving research articles from PubMed with specific focus on open access content filtering and full-text link retrieval.
              Last updated -
              4
              3
              JavaScript
            • A
              security
              A
              license
              A
              quality
              A Model Context Protocol server that provides access to the DBLP computer science bibliography database, allowing AI models to search publications, process citations, and generate accurate BibTeX entries.
              Last updated -
              6
              1
              Python
              MIT License
              • Apple
              • Linux
            • -
              security
              F
              license
              -
              quality
              A Model Context Protocol server providing AI assistants with access to healthcare data tools, including FDA drug information, PubMed research, health topics, clinical trials, and medical terminology lookup.
              Last updated -
              6
              Python
              • Linux
              • Apple
            • -
              security
              A
              license
              -
              quality
              A Model Context Protocol server that enables querying the Crossref API to search for academic publications by title, author, or DOI, returning structured metadata about scholarly works.
              Last updated -
              JavaScript
              MIT License

            View all related MCP servers

            MCP directory API

            We provide all the information about MCP servers via our MCP API.

            curl -X GET 'https://glama.ai/api/mcp/v1/servers/chrismannina/pubmed-mcp'

            If you have feedback or need assistance with the MCP directory API, please join our Discord server