Skip to main content
Glama

šŸš€ Unified Docs Hub - The Ultimate MCP Documentation Server

License: MIT Python 3.8+ MCP Server

Transform your AI assistant into a documentation powerhouse! Unified Docs Hub is an MCP (Model Context Protocol) server that creates a massive, searchable knowledge base from 170+ curated repositories and 1000+ auto-discovered GitHub projects.

🌟 Why Unified Docs Hub?

Ever wished your AI assistant had instant access to ALL the documentation it needs? This MCP server solves that by:

  • šŸ“š Massive Knowledge Base: 170+ hand-picked repositories + 1000+ auto-discovered popular projects

  • šŸ” Lightning-Fast Search: Full-text search across 11,000+ documentation files in milliseconds

  • šŸ¤– AI-Optimized: Perfect for Claude, ChatGPT, and other AI assistants using MCP

  • šŸ“ˆ Self-Updating: Automated daily updates and weekly discovery of new repositories

  • šŸŽÆ Specialized Coverage: Deep expertise in Trading/Finance, AI/ML, DevOps, and 20+ categories

šŸŽ¬ Real-World Examples

Example 1: Building a Trading Bot

AI: "Show me how to build a crypto trading bot with backtesting" You: unified_search(query="crypto trading bot backtesting", category="Trading & Finance") Result: Instant access to documentation from: - Freqtrade (advanced crypto trading bot) - Backtrader (backtesting framework) - CCXT (100+ exchange APIs) - TA-Lib (200+ technical indicators)

Example 2: Learning Kubernetes

AI: "Explain Kubernetes deployment strategies" You: unified_search(query="kubernetes deployment strategies", category="Cloud/DevOps") Result: Documentation from: - Official Kubernetes docs - Helm charts best practices - ArgoCD GitOps workflows - Istio service mesh patterns

Example 3: Machine Learning Pipeline

AI: "Set up an MLOps pipeline with experiment tracking" You: unified_search(query="mlops pipeline experiment tracking", category="MLOps") Result: Comprehensive guides from: - MLflow (experiment tracking) - Kubeflow (distributed training) - DVC (data versioning) - Weights & Biases (visualization)

šŸ“Š What's Inside?

Knowledge Coverage

Category

Repositories

Highlights

Trading & Finance

64 repos

Algorithmic trading, options, forex, HFT, portfolio optimization

AI/ML

20 repos

LLMs, transformers, deep learning, NLP, computer vision

Cloud/DevOps

15 repos

Kubernetes, Docker, Terraform, CI/CD, monitoring

Web Development

12 repos

React, Vue, Next.js, full-stack frameworks

MLOps

6 repos

ML lifecycle, experiment tracking, model deployment

Data Engineering

8 repos

Apache Spark, Airflow, dbt, data pipelines

Observability

5 repos

Prometheus, Grafana, OpenTelemetry, APM

Blockchain

5 repos

Smart contracts, DeFi, Web3 development

20+ More Categories

...

Security, databases, mobile, desktop, and more

Key Features

  • šŸ”„ Full-Text Search: SQLite FTS5 engine for sub-second searches across millions of lines

  • šŸ“ˆ Quality Scoring: Curated repos ranked by documentation quality (1-10 scale)

  • šŸ·ļø Smart Categorization: Browse by technology area or programming language

  • šŸ”„ Auto-Discovery: Continuously finds new popular repositories (10k+ stars)

  • šŸ’¾ Efficient Storage: Deduplication and compression keep the database lean

  • šŸ›”ļø Rate Limit Handling: Respects GitHub API limits with smart throttling

šŸš€ Quick Start

Prerequisites

  • Python 3.8 or higher

  • GitHub Personal Access Token (optional but recommended)

  • An MCP-compatible AI assistant (Claude Desktop, Continue.dev, etc.)

Installation

  1. Clone the repository

git clone https://github.com/yourusername/unified-docs-hub.git cd unified-docs-hub
  1. Set up Python environment

python3 -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate pip install -r requirements.txt
  1. Configure your MCP client

For Claude Desktop, add to ~/Library/Application Support/Claude/claude_desktop_config.json:

{ "mcpServers": { "unified-docs-hub": { "command": "/path/to/unified-docs-hub/venv/bin/python", "args": ["/path/to/unified-docs-hub/unified_docs_hub_server.py"], "env": { "GITHUB_TOKEN": "your-github-token-here" } } } }
  1. Initial indexing (optional - the server will do this automatically)

# Index all curated repositories python -c "import asyncio; from unified_docs_hub_server import index_repositories; asyncio.run(index_repositories('smart'))"

šŸ“‹ Available MCP Tools

Search across all documentation with powerful filters.

# Basic search unified_search("react hooks tutorial") # Advanced search with filters unified_search( query="transformer architecture attention", category="AI/ML", min_stars=5000 ) # Trading-specific search unified_search( query="options greeks volatility smile", category="Trading & Finance" )

index_repositories

Control repository indexing and discovery.

# Smart mode: Index curated + discover popular (recommended) index_repositories(mode="smart") # Update all existing repos index_repositories(mode="update") # Discover new trending repos index_repositories(mode="discover", min_stars=5000, count=50)

list_repositories

Browse indexed repositories.

# List all Trading & Finance repos list_repositories(category="Trading & Finance") # Show only curated high-quality repos list_repositories(source="curated", limit=20)

get_repository_docs

Get all documentation for a specific repository.

# Get all Kubernetes docs get_repository_docs("kubernetes/kubernetes") # Get trading library docs get_repository_docs("freqtrade/freqtrade")

get_statistics

View comprehensive database statistics.

get_statistics() # Returns: Total repos, documents, categories, languages, API status

šŸ¤– Automated Updates

The server includes automated indexing that keeps your knowledge base fresh:

Setup Automated Updates

# Run the setup script ./setup_automated_indexing.sh # Or manually start the updater python automated_index_updater.py --once # Run once python automated_index_updater.py # Run continuously

Update Schedule

  • Daily: Updates all curated repositories (2 AM, 2 PM)

  • Weekly: Discovers new trending repositories

  • On-Demand: Manual updates via MCP tools

šŸ—ļø Architecture

Core Components

unified-docs-hub/ ā”œā”€ā”€ unified_docs_hub_server.py # Main MCP server ā”œā”€ā”€ database.py # SQLite + FTS5 engine ā”œā”€ā”€ github_client.py # GitHub API integration ā”œā”€ā”€ response_limiter.py # HTTP/2 error prevention ā”œā”€ā”€ repositories.yaml # Curated repo list ā”œā”€ā”€ automated_index_updater.py # Auto-update system └── unified_docs.db # Documentation database

How It Works

  1. Curation: Hand-picked repositories in repositories.yaml with quality scores

  2. Discovery: Automatically finds popular repos (10k+ stars) via GitHub API

  3. Indexing: Downloads and indexes README, docs/, and documentation files

  4. Storage: SQLite with FTS5 for efficient full-text search

  5. Serving: FastMCP server provides tools for AI assistants

  6. Updates: Automated system keeps documentation current

šŸŽÆ Use Cases

For AI Developers

  • Instant access to ML framework documentation

  • Compare different approaches across libraries

  • Find code examples and best practices

For Traders & Quants

  • Complete algorithmic trading documentation

  • Options pricing models and strategies

  • Backtesting frameworks and market data APIs

For DevOps Engineers

  • Kubernetes patterns and anti-patterns

  • CI/CD pipeline examples

  • Infrastructure as Code templates

For Full-Stack Developers

  • Frontend framework comparisons

  • Backend architecture patterns

  • Database optimization techniques

šŸ› ļø Customization

Adding Custom Repositories

Edit repositories.yaml:

curated_repositories: - repo: "owner/awesome-project" category: "Web Development" description: "An awesome web framework" quality_score: 9 priority: high doc_paths: - "docs/" - "README.md" topics: ["web", "framework", "javascript"]

Creating Custom Categories

Add new categories to group related technologies:

- repo: "quantum-computing/qiskit" category: "Quantum Computing" # New category! description: "Quantum computing SDK"

šŸ“ˆ Expansion Reports

See our journey of building this massive knowledge base:

šŸ¤ Contributing

We welcome contributions! Please see our Contributing Guide for details.

Ways to Contribute

  • Add high-quality repositories to repositories.yaml

  • Improve search algorithms

  • Add new MCP tools

  • Enhance documentation

  • Report bugs or request features

šŸ“ License

This project is licensed under the MIT License - see the LICENSE file for details.

šŸ™ Acknowledgments

  • Model Context Protocol for enabling AI-assistant integrations

  • All the amazing open-source projects indexed in our knowledge base

  • The GitHub API for making documentation discovery possible

šŸ“¬ Contact

For questions, suggestions, or collaboration opportunities:

  • Open an issue on GitHub

  • Submit a pull request

  • Star the repository to show support!


Built with ā¤ļø for developers who want their AI assistants to know everything!

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/boodrow/MCP-Server-unified-docs-hub'

If you have feedback or need assistance with the MCP directory API, please join our Discord server