[](https://mseep.ai/app/3ae69b1a-074a-45c2-8445-bae75239ce92)
# π Unified Docs Hub - The Ultimate MCP Documentation Server
[](https://opensource.org/licenses/MIT)
[](https://www.python.org/downloads/)
[](https://github.com/modelcontextprotocol)
Transform your AI assistant into a documentation powerhouse! Unified Docs Hub is an MCP (Model Context Protocol) server that creates a massive, searchable knowledge base from 170+ curated repositories and 1000+ auto-discovered GitHub projects.
## π Why Unified Docs Hub?
Ever wished your AI assistant had instant access to ALL the documentation it needs? This MCP server solves that by:
- **π Massive Knowledge Base**: 170+ hand-picked repositories + 1000+ auto-discovered popular projects
- **π Lightning-Fast Search**: Full-text search across 11,000+ documentation files in milliseconds
- **π€ AI-Optimized**: Perfect for Claude, ChatGPT, and other AI assistants using MCP
- **π Self-Updating**: Automated daily updates and weekly discovery of new repositories
- **π― Specialized Coverage**: Deep expertise in Trading/Finance, AI/ML, DevOps, and 20+ categories
## π¬ Real-World Examples
### Example 1: Building a Trading Bot
```
AI: "Show me how to build a crypto trading bot with backtesting"
You: unified_search(query="crypto trading bot backtesting", category="Trading & Finance")
Result: Instant access to documentation from:
- Freqtrade (advanced crypto trading bot)
- Backtrader (backtesting framework)
- CCXT (100+ exchange APIs)
- TA-Lib (200+ technical indicators)
```
### Example 2: Learning Kubernetes
```
AI: "Explain Kubernetes deployment strategies"
You: unified_search(query="kubernetes deployment strategies", category="Cloud/DevOps")
Result: Documentation from:
- Official Kubernetes docs
- Helm charts best practices
- ArgoCD GitOps workflows
- Istio service mesh patterns
```
### Example 3: Machine Learning Pipeline
```
AI: "Set up an MLOps pipeline with experiment tracking"
You: unified_search(query="mlops pipeline experiment tracking", category="MLOps")
Result: Comprehensive guides from:
- MLflow (experiment tracking)
- Kubeflow (distributed training)
- DVC (data versioning)
- Weights & Biases (visualization)
```
## π What's Inside?
### Knowledge Coverage
| Category | Repositories | Highlights |
|----------|-------------|------------|
| **Trading & Finance** | 64 repos | Algorithmic trading, options, forex, HFT, portfolio optimization |
| **AI/ML** | 20 repos | LLMs, transformers, deep learning, NLP, computer vision |
| **Cloud/DevOps** | 15 repos | Kubernetes, Docker, Terraform, CI/CD, monitoring |
| **Web Development** | 12 repos | React, Vue, Next.js, full-stack frameworks |
| **MLOps** | 6 repos | ML lifecycle, experiment tracking, model deployment |
| **Data Engineering** | 8 repos | Apache Spark, Airflow, dbt, data pipelines |
| **Observability** | 5 repos | Prometheus, Grafana, OpenTelemetry, APM |
| **Blockchain** | 5 repos | Smart contracts, DeFi, Web3 development |
| **20+ More Categories** | ... | Security, databases, mobile, desktop, and more |
### Key Features
- **π₯ Full-Text Search**: SQLite FTS5 engine for sub-second searches across millions of lines
- **π Quality Scoring**: Curated repos ranked by documentation quality (1-10 scale)
- **π·οΈ Smart Categorization**: Browse by technology area or programming language
- **π Auto-Discovery**: Continuously finds new popular repositories (10k+ stars)
- **πΎ Efficient Storage**: Deduplication and compression keep the database lean
- **π‘οΈ Rate Limit Handling**: Respects GitHub API limits with smart throttling
## π Quick Start
### Prerequisites
- Python 3.8 or higher
- GitHub Personal Access Token (optional but recommended)
- An MCP-compatible AI assistant (Claude Desktop, Continue.dev, etc.)
### Installation
1. **Clone the repository**
```bash
git clone https://github.com/yourusername/unified-docs-hub.git
cd unified-docs-hub
```
2. **Set up Python environment**
```bash
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
```
3. **Configure your MCP client**
For Claude Desktop, add to `~/Library/Application Support/Claude/claude_desktop_config.json`:
```json
{
"mcpServers": {
"unified-docs-hub": {
"command": "/path/to/unified-docs-hub/venv/bin/python",
"args": ["/path/to/unified-docs-hub/unified_docs_hub_server.py"],
"env": {
"GITHUB_TOKEN": "your-github-token-here"
}
}
}
}
```
4. **Initial indexing** (optional - the server will do this automatically)
```bash
# Index all curated repositories
python -c "import asyncio; from unified_docs_hub_server import index_repositories; asyncio.run(index_repositories('smart'))"
```
## π Available MCP Tools
### `unified_search`
Search across all documentation with powerful filters.
```python
# Basic search
unified_search("react hooks tutorial")
# Advanced search with filters
unified_search(
query="transformer architecture attention",
category="AI/ML",
min_stars=5000
)
# Trading-specific search
unified_search(
query="options greeks volatility smile",
category="Trading & Finance"
)
```
### `index_repositories`
Control repository indexing and discovery.
```python
# Smart mode: Index curated + discover popular (recommended)
index_repositories(mode="smart")
# Update all existing repos
index_repositories(mode="update")
# Discover new trending repos
index_repositories(mode="discover", min_stars=5000, count=50)
```
### `list_repositories`
Browse indexed repositories.
```python
# List all Trading & Finance repos
list_repositories(category="Trading & Finance")
# Show only curated high-quality repos
list_repositories(source="curated", limit=20)
```
### `get_repository_docs`
Get all documentation for a specific repository.
```python
# Get all Kubernetes docs
get_repository_docs("kubernetes/kubernetes")
# Get trading library docs
get_repository_docs("freqtrade/freqtrade")
```
### `get_statistics`
View comprehensive database statistics.
```python
get_statistics()
# Returns: Total repos, documents, categories, languages, API status
```
## π€ Automated Updates
The server includes automated indexing that keeps your knowledge base fresh:
### Setup Automated Updates
```bash
# Run the setup script
./setup_automated_indexing.sh
# Or manually start the updater
python automated_index_updater.py --once # Run once
python automated_index_updater.py # Run continuously
```
### Update Schedule
- **Daily**: Updates all curated repositories (2 AM, 2 PM)
- **Weekly**: Discovers new trending repositories
- **On-Demand**: Manual updates via MCP tools
## ποΈ Architecture
### Core Components
```
unified-docs-hub/
βββ unified_docs_hub_server.py # Main MCP server
βββ database.py # SQLite + FTS5 engine
βββ github_client.py # GitHub API integration
βββ response_limiter.py # HTTP/2 error prevention
βββ repositories.yaml # Curated repo list
βββ automated_index_updater.py # Auto-update system
βββ unified_docs.db # Documentation database
```
### How It Works
1. **Curation**: Hand-picked repositories in `repositories.yaml` with quality scores
2. **Discovery**: Automatically finds popular repos (10k+ stars) via GitHub API
3. **Indexing**: Downloads and indexes README, docs/, and documentation files
4. **Storage**: SQLite with FTS5 for efficient full-text search
5. **Serving**: FastMCP server provides tools for AI assistants
6. **Updates**: Automated system keeps documentation current
## π― Use Cases
### For AI Developers
- Instant access to ML framework documentation
- Compare different approaches across libraries
- Find code examples and best practices
### For Traders & Quants
- Complete algorithmic trading documentation
- Options pricing models and strategies
- Backtesting frameworks and market data APIs
### For DevOps Engineers
- Kubernetes patterns and anti-patterns
- CI/CD pipeline examples
- Infrastructure as Code templates
### For Full-Stack Developers
- Frontend framework comparisons
- Backend architecture patterns
- Database optimization techniques
## π οΈ Customization
### Adding Custom Repositories
Edit `repositories.yaml`:
```yaml
curated_repositories:
- repo: "owner/awesome-project"
category: "Web Development"
description: "An awesome web framework"
quality_score: 9
priority: high
doc_paths:
- "docs/"
- "README.md"
topics: ["web", "framework", "javascript"]
```
### Creating Custom Categories
Add new categories to group related technologies:
```yaml
- repo: "quantum-computing/qiskit"
category: "Quantum Computing" # New category!
description: "Quantum computing SDK"
```
## π Expansion Reports
See our journey of building this massive knowledge base:
- [EXPANSION_SUMMARY.md](EXPANSION_SUMMARY.md) - Overview of all expansions
- [TRADING_KNOWLEDGE_BASE_COMPLETE.md](TRADING_KNOWLEDGE_BASE_COMPLETE.md) - Trading & Finance deep dive
- [ULTIMATE_TRADING_EXPANSION.md](ULTIMATE_TRADING_EXPANSION.md) - Final trading expansion details
- [FINAL_EXPANSION_REPORT_2025.md](FINAL_EXPANSION_REPORT_2025.md) - Complete 2025 expansion
## π€ Contributing
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.
### Ways to Contribute
- Add high-quality repositories to `repositories.yaml`
- Improve search algorithms
- Add new MCP tools
- Enhance documentation
- Report bugs or request features
## π License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## π Acknowledgments
- [Model Context Protocol](https://github.com/modelcontextprotocol) for enabling AI-assistant integrations
- All the amazing open-source projects indexed in our knowledge base
- The GitHub API for making documentation discovery possible
## π¬ Contact
For questions, suggestions, or collaboration opportunities:
- Open an issue on GitHub
- Submit a pull request
- Star the repository to show support!
---
Built with β€οΈ for developers who want their AI assistants to know everything!