Skip to main content
Glama

baidu-ai-search

Official
by baidubce
test_object_recognize.py5.13 kB
# Copyright (c) 2023 Baidu, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest import requests import appbuilder from appbuilder.core._exception import InvalidRequestArgumentError @unittest.skipUnless(os.getenv("TEST_CASE", "UNKNOWN") == "CPU_PARALLEL", "") class TestObjectRecognize(unittest.TestCase): def setUp(self): """ 设置环境变量。 Args: None Returns: None. """ self.object_recognition = appbuilder.ObjectRecognition() def test_run_with_raw_image(self): """ 使用原始图片进行单测 Args: None Returns: None """ image_url = "https://bj.bcebos.com/v1/appbuilder/object_recognize_test.png?" \ "authorization=bce-auth-v1%2FALTAKGa8m4qCUasgoljdEDAzLm%2F2024-01-" \ "11T11%3A00%3A19Z%2F-1%2Fhost%2F2c31bf29205f61e58df661dc80af31a1dc" \ "1ba1de0a8f072bc5a87102bd32f9e3" raw_image = requests.get(image_url).content # Create message with raw_image message = appbuilder.Message(content={"raw_image": raw_image}) # Recognize landmark output = self.object_recognition.run(message) # Assert output is not None self.assertIsNotNone(output) def test_run_with_no_image(self): """ 测试run函数在传入无效图像的情况下的行为 Args: None Returns: None """ # create empty message message = appbuilder.Message(content={}) # Assert ValueError is raised with self.assertRaises(ValueError): self.object_recognition.run(message) def test_run_with_timeout_and_retry(self): """ 测试run方法,timeout、retry参数 Args: None Returns: None """ image_url = "https://bj.bcebos.com/v1/appbuilder/object_recognize_test.png?" \ "authorization=bce-auth-v1%2FALTAKGa8m4qCUasgoljdEDAzLm%2F2024-01-" \ "11T11%3A00%3A19Z%2F-1%2Fhost%2F2c31bf29205f61e58df661dc80af31a1dc" \ "1ba1de0a8f072bc5a87102bd32f9e3" raw_image = requests.get(image_url).content # Create message with raw_image message = appbuilder.Message(content={"raw_image": raw_image}) # Recognize landmark with timeout and retry parameters output = self.object_recognition.run(message, timeout=5.0, retry=3) # Assert output is not None self.assertIsNotNone(output) def test_run_with_invalid_url(self): """ 测试run函数在传入无效URL的情况下的行为。 Args: None Returns: None """ url = "http://example.com/invalid_url.jpg" message = appbuilder.Message({"url": url}) with self.assertRaises(appbuilder.AppBuilderServerException): self.object_recognition.run(message=message) def test_run_without_image_and_url(self): """ 测试run 函数在没有传入图像和URL的情况下的行为。 Args: None Returns: None """ message = appbuilder.Message({}) with self.assertRaises(ValueError): self.object_recognition.run(message=message) def test_tool_eval_valid(self): """测试 tool 方法对有效请求的处理。""" image_url = "https://bj.bcebos.com/v1/appbuilder/object_recognize_test.png?" \ "authorization=bce-auth-v1%2FALTAKGa8m4qCUasgoljdEDAzLm%2F2024-01-" \ "11T11%3A00%3A19Z%2F-1%2Fhost%2F2c31bf29205f61e58df661dc80af31a1dc" \ "1ba1de0a8f072bc5a87102bd32f9e3" result = self.object_recognition.tool_eval(name="object_recognition", streaming=True, img_url=image_url) res = [item for item in result] self.assertNotEqual(len(res), 0) def test_tool_eval_invalid(self): """测试 tool 方法对无效请求的处理。""" with self.assertRaises(InvalidRequestArgumentError): result = self.object_recognition.tool_eval(name="object_recognition", streaming=True) next(result) with self.assertRaises(InvalidRequestArgumentError): result=self.object_recognition.tool_eval(name='test',streaming=False,file_urls={'test_01':'test'},img_name='test') next(result) if __name__ == '__main__': unittest.main()

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/baidubce/app-builder'

If you have feedback or need assistance with the MCP directory API, please join our Discord server