Skip to main content
Glama

baidu-ai-search

Official
by baidubce
test_assistant_class_runs.py5.52 kB
import unittest import os import appbuilder # from tests.pytest_utils import Utils import random import string import os class Utils(object): """ utils 方法父类 """ @staticmethod def get_random_string(str_len, prefix=None): """ 生成随机字符串,可指定前缀 """ gen_name = ''.join( random.choice(string.ascii_letters + string.digits) for _ in range(str_len) ) if prefix: name = str(prefix) + gen_name else: name = gen_name return name @staticmethod def get_data_file(filename): current_dir = os.path.dirname(os.path.abspath(__file__)) full_file_path = os.path.join(current_dir, "data", filename) return full_file_path def get_cur_whether(location:str, unit:str): return "{} 的当前温度是30 {}".format(location, unit) @unittest.skip("QPS超限") class TestFunctionCall(unittest.TestCase): def setUp(self): os.environ["APPBUILDER_TOKEN"] = os.environ["APPBUILDER_TOKEN_V2"] def test_run_create_v1(self): from appbuilder.core.assistant.type import thread_type assistant = appbuilder.assistant.assistants.create( name="test_assistant", description="test assistant", instructions="每句话回复前都加上我是秦始皇" ) file_path = Utils.get_data_file("qa_doc_parser_extract_table_from_doc.png") file = appbuilder.assistant.assistants.files.create(file_path) self.assertIsInstance(file, appbuilder.assistant.type.AssistantFilesCreateResponse) thread = appbuilder.assistant.threads.create() appbuilder.assistant.threads.messages.create( thread_id=thread.id, content="hello world", file_ids=[file.id] ) model_parameters = appbuilder.assistant.public_type.AssistantModelParameters( chat_parameters = appbuilder.assistant.public_type.AssistantChatParameters( temperature = 0.8, top_p = 0.8, penalty_score = 1.0 ), thought_parameters = appbuilder.assistant.public_type.AssistantThoughtParameters( temperature = 0.01, top_p = 0.0, penalty_score = 1.0 ) ) run_result = appbuilder.assistant.threads.runs.run( thread_id=thread.id, assistant_id=assistant.id, model_parameters=model_parameters ) self.assertIsInstance(run_result, thread_type.RunResult) self.assertEqual(run_result.assistant_id, assistant.id) self.assertEqual(run_result.thread_id, thread.id) self.assertEqual(run_result.status, "completed") self.assertIn("我是秦始皇", run_result.final_answer.message.content[0].text.value) def test_run_create_v2(self): assistant = appbuilder.assistant.assistants.create( name="test_assistant", description="test assistant", instructions="每句话回复前都加上我是秦始皇" ) thread = appbuilder.assistant.threads.create() appbuilder.assistant.threads.messages.create( thread_id=thread.id, content="hello world", ) with self.assertRaises(ValueError): appbuilder.assistant.threads.runs.run( assistant_id=assistant.id, ) def test_threads_run_raise(self): run=appbuilder.core.assistant.threads.runs.runs.Runs() with self.assertRaises(ValueError): run._stream(assistant_id='') def test_threads_run_model_raise(self): run=appbuilder.core.assistant.threads.runs.runs.Runs() model_parameters = appbuilder.assistant.public_type.AssistantModelParameters( chat_parameters = appbuilder.assistant.public_type.AssistantChatParameters( temperature = 0.8, top_p = 0.8, penalty_score = 1.0 ), thought_parameters = appbuilder.assistant.public_type.AssistantThoughtParameters( temperature = 0.01, top_p = 0.0, penalty_score = 1.0 ) ) with self.assertRaises(ValueError): model_parameters.chat_parameters.temperature = 10 run.run(assistant_id='test', thread_id = 'thread_id', model_parameters = model_parameters) with self.assertRaises(ValueError): run._stream(assistant_id='test',thread_id = 'thread_id', model_parameters = model_parameters) model_parameters.chat_parameters.temperature = 0.8 with self.assertRaises(ValueError): model_parameters.chat_parameters.top_p = 10 run.run(assistant_id='test', thread_id = 'thread_id', model_parameters = model_parameters) with self.assertRaises(ValueError): run._stream(assistant_id='test', thread_id = 'thread_id', model_parameters = model_parameters) model_parameters.chat_parameters.top_p = 0.8 with self.assertRaises(ValueError): model_parameters.chat_parameters.penalty_score = 10 run.run(assistant_id='test', thread_id = 'thread_id', model_parameters = model_parameters) with self.assertRaises(ValueError): run._stream(assistant_id='test',thread_id = 'thread_id', model_parameters = model_parameters) if __name__ == '__main__': unittest.main()

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/baidubce/app-builder'

If you have feedback or need assistance with the MCP directory API, please join our Discord server