Skip to main content
Glama

baidu-ai-search

Official
by baidubce
test_matching.py2.11 kB
""" test mathcing """ import sys sys.path.append('../..') import unittest import os import appbuilder class TestMatching(unittest.TestCase): def test_example(self): # 初始化所需要的组件 embedding = appbuilder.Embedding() matching = appbuilder.Matching(embedding) # 定义输入query和文本列表 query = appbuilder.Message("你好") contexts = appbuilder.Message(["世界", "你好"]) # 根据query,对文本列表做相似度排序 contexts_matched = matching(query, contexts) self.assertListEqual(contexts_matched.content, ['你好', '世界']) def test_run(self): embedding = appbuilder.Embedding() matching = appbuilder.Matching(embedding) query = appbuilder.Message("你好") contexts = appbuilder.Message(["世界", "你好"]) contexts_matched = matching(query, contexts) self.assertListEqual( contexts_matched.content, ['你好', '世界'] ) def test_return_score(self): embedding = appbuilder.Embedding() matching = appbuilder.Matching(embedding) query = appbuilder.Message("你好") contexts = appbuilder.Message(["世界", "你好"]) contexts_matched = matching(query, contexts, return_score=True) scores = [i[0] for i in contexts_matched.content] contexts = [i[1] for i in contexts_matched.content] self.assertListEqual( contexts, ['你好', '世界'] ) self.assertGreater(scores[0], scores[1]) def test_semantics(self): embedding = appbuilder.Embedding() matching = appbuilder.Matching(embedding) query = appbuilder.Message("你好") query_embedding = embedding(query) contexts = appbuilder.Message(["世界", "你好"]) context_embedding = embedding.batch(contexts) semantics = matching.semantics(query_embedding, context_embedding) self.assertEqual(len(semantics.content), 2) if __name__ == '__main__': unittest.main()

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/baidubce/app-builder'

If you have feedback or need assistance with the MCP directory API, please join our Discord server