Skip to main content
Glama
baidu

Baidu Vector Database MCP Server

Official
by baidu

vector_search

Perform vector similarity searches in Baidu Vector Database by combining vector matching and scalar attribute filtering for precise data retrieval. Specify table, vector, and optional filters to get relevant results efficiently.

Instructions

Perform vector similarity search combining vector similarity and scalar attribute filtering in the Mochow instance. Args: table_name (str): Name of the table to search. vector (list[float]): Search vector. vector_field (str): Target field containing vectors to search. Defaults to "vector". limit (int): Maximum number of results. Defaults to 10. output_fields (Optional[list[str]]): Fields to return in the results. Defaults to None. filter_expr (Optional[str]): Filter expression for scalar attributes. Defaults to None. params: Additional vector search parameters Returns: str: A string containing the vector search results.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
filter_exprNo
limitNo
output_fieldsNo
table_nameYes
vectorYes
vector_fieldNovector

Implementation Reference

  • The primary MCP tool handler for 'vector_search'. It is registered via @mcp.tool() decorator and executes the vector search using the MochowConnector, formatting results as a string.
    @mcp.tool() async def vector_search( table_name: str, vector: list[float], vector_field: str = "vector", filter_expr: Optional[str] = None, limit: int = 10, output_fields: Optional[list[str]] = None, ctx: Context = None, ) -> str: """ Perform vector similarity search combining vector similarity and scalar attribute filtering in the Mochow instance. Args: table_name (str): Name of the table to search. vector (list[float]): Search vector. vector_field (str): Target field containing vectors to search. Defaults to "vector". limit (int): Maximum number of results. Defaults to 10. output_fields (Optional[list[str]]): Fields to return in the results. Defaults to None. filter_expr (Optional[str]): Filter expression for scalar attributes. Defaults to None. params: Additional vector search parameters Returns: str: A string containing the vector search results. """ connector = ctx.request_context.lifespan_context.connector search_results = await connector.vector_search(table_name, vector, vector_field, limit, output_fields, filter_expr) output = f"Vector search results for '{table_name}':\n" for row in search_results.rows: output += f"{str(row["row"])}\n" return output
  • MochowConnector.vector_search helper method that constructs a VectorTopkSearchRequest and invokes the underlying database table's vector_search method to perform the actual vector similarity search.
    async def vector_search( self, table_name: str, vector: list[float], vector_field: str = "vector", limit: int = 10, output_fields: Optional[list[str]] = None, filter_expr: Optional[str] = None, params: Optional[dict[str, Any]] = None, ) -> HttpResponse: """ Perform vector similarity search combining vector similarity and scalar attribute filtering. Args: table_name (str): Name of the table to search. vector (list[float]): Search vector. vector_field (str): Target field containing vectors to search. Defaults to "vector". limit (int): Maximum number of results. Defaults to 10. output_fields (Optional[list[str]]): Fields to return in the results. Defaults to None. filter_expr (Optional[str]): Filter expression for scalar attributes. Defaults to None. params (Optional[dict[str, Any]]): Additional vector search parameters. Defaults to None. Returns: HttpResponse: The HTTP response containing the search results. """ if self.database is None: raise ValueError("Switch to the database before perform vector search.") request = VectorTopkSearchRequest(vector_field=vector_field, vector=FloatVector(vector), limit=limit, filter=filter_expr, config=VectorSearchConfig(ef=params.get("ef", 200))) try: return self.database.table(table_name).vector_search(request=request, projections=output_fields) except Exception as e: raise ValueError(f"Failed to perform vector search: {str(e)}")
  • The @mcp.tool() decorator registers the vector_search function as an MCP tool.
    @mcp.tool()
  • Imports schema models used in vector search: VectorTopkSearchRequest, VectorSearchConfig, FloatVector.
    from pymochow.model.table import VectorTopkSearchRequest, VectorSearchConfig, FloatVector, BM25SearchRequest

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/baidu/mochow-mcp-server-python'

If you have feedback or need assistance with the MCP directory API, please join our Discord server