Skip to main content
Glama
baidu

Baidu Vector Database MCP Server

Official
by baidu

vector_search

Search for similar vectors in Baidu Vector Database tables while filtering results by scalar attributes to find relevant data points efficiently.

Instructions

Perform vector similarity search combining vector similarity and scalar attribute filtering in the Mochow instance. Args: table_name (str): Name of the table to search. vector (list[float]): Search vector. vector_field (str): Target field containing vectors to search. Defaults to "vector". limit (int): Maximum number of results. Defaults to 10. output_fields (Optional[list[str]]): Fields to return in the results. Defaults to None. filter_expr (Optional[str]): Filter expression for scalar attributes. Defaults to None. params: Additional vector search parameters Returns: str: A string containing the vector search results.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
table_nameYes
vectorYes
vector_fieldNovector
filter_exprNo
limitNo
output_fieldsNo

Implementation Reference

  • The main handler function for the 'vector_search' MCP tool. It uses the MochowConnector to perform the vector search and formats the results as a string.
    @mcp.tool() async def vector_search( table_name: str, vector: list[float], vector_field: str = "vector", filter_expr: Optional[str] = None, limit: int = 10, output_fields: Optional[list[str]] = None, ctx: Context = None, ) -> str: """ Perform vector similarity search combining vector similarity and scalar attribute filtering in the Mochow instance. Args: table_name (str): Name of the table to search. vector (list[float]): Search vector. vector_field (str): Target field containing vectors to search. Defaults to "vector". limit (int): Maximum number of results. Defaults to 10. output_fields (Optional[list[str]]): Fields to return in the results. Defaults to None. filter_expr (Optional[str]): Filter expression for scalar attributes. Defaults to None. params: Additional vector search parameters Returns: str: A string containing the vector search results. """ connector = ctx.request_context.lifespan_context.connector search_results = await connector.vector_search(table_name, vector, vector_field, limit, output_fields, filter_expr) output = f"Vector search results for '{table_name}':\n" for row in search_results.rows: output += f"{str(row["row"])}\n" return output
  • The @mcp.tool() decorator registers the vector_search function as an MCP tool.
    @mcp.tool()
  • Helper method in MochowConnector class that constructs the VectorTopkSearchRequest and calls the underlying database.vector_search method to execute the vector search.
    async def vector_search( self, table_name: str, vector: list[float], vector_field: str = "vector", limit: int = 10, output_fields: Optional[list[str]] = None, filter_expr: Optional[str] = None, params: Optional[dict[str, Any]] = None, ) -> HttpResponse: """ Perform vector similarity search combining vector similarity and scalar attribute filtering. Args: table_name (str): Name of the table to search. vector (list[float]): Search vector. vector_field (str): Target field containing vectors to search. Defaults to "vector". limit (int): Maximum number of results. Defaults to 10. output_fields (Optional[list[str]]): Fields to return in the results. Defaults to None. filter_expr (Optional[str]): Filter expression for scalar attributes. Defaults to None. params (Optional[dict[str, Any]]): Additional vector search parameters. Defaults to None. Returns: HttpResponse: The HTTP response containing the search results. """ if self.database is None: raise ValueError("Switch to the database before perform vector search.") request = VectorTopkSearchRequest(vector_field=vector_field, vector=FloatVector(vector), limit=limit, filter=filter_expr, config=VectorSearchConfig(ef=params.get("ef", 200))) try: return self.database.table(table_name).vector_search(request=request, projections=output_fields) except Exception as e: raise ValueError(f"Failed to perform vector search: {str(e)}")
  • Imports schema classes used in the vector_search implementation, such as VectorTopkSearchRequest for input validation and VectorSearchConfig for parameters.
    from pymochow.model.table import VectorTopkSearchRequest, VectorSearchConfig, FloatVector, BM25SearchRequest

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/baidu/mochow-mcp-server-python'

If you have feedback or need assistance with the MCP directory API, please join our Discord server