Baidu Vector Database MCP Server

by baidu
Apache 2.0
1
  • Apple

create_vector_index

Builds a vector index on a specified field within a table, enabling efficient vector-based searches. Supports HNSW, HNSWPQ, and HNSWSQ index types with L2, COSINE, or IP distance metrics for optimized query performance.

Instructions

Create a vector index on a vector type field in the Mochow instance. Args: table_name (str): Name of the table. index_name (str): Name of the index. field_name (str): Name of the vector field. index_type (str): Type of vector index. Supported values are "HNSW", "HNSWPQ", "HNSWSQ". metric_type (str): Distance metric. Supported values are "L2", "COSINE", "IP". params (Optional[dict[str, Any]]): Additional vector index parameters. Returns: str: A message indicating the success of index creation.

Input Schema

NameRequiredDescriptionDefault
field_nameYes
index_nameYes
index_typeNoHNSW
metric_typeNoL2
paramsNo
table_nameYes

Input Schema (JSON Schema)

{ "properties": { "field_name": { "title": "Field Name", "type": "string" }, "index_name": { "title": "Index Name", "type": "string" }, "index_type": { "default": "HNSW", "title": "Index Type", "type": "string" }, "metric_type": { "default": "L2", "title": "Metric Type", "type": "string" }, "params": { "anyOf": [ { "additionalProperties": true, "type": "object" }, { "type": "null" } ], "default": null, "title": "Params" }, "table_name": { "title": "Table Name", "type": "string" } }, "required": [ "table_name", "index_name", "field_name" ], "title": "create_vector_indexArguments", "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/baidu/mochow-mcp-server-python'

If you have feedback or need assistance with the MCP directory API, please join our Discord server