Skip to main content
Glama

Canvas MCP - College and High School Courses

帆布 MCP

铁匠徽章

Canvas MCP 是一套工具,允许您的 AI 代理与 Canvas LMS 和 Gradescope 进行交互。

等级范围

例子

特征

  • 查找相关资源- 能够使用自然语言查找给定查询的相关资源!

  • 查询即将到来的作业- 不仅获取即将到来的作业,还提供给定课程的细目分类。

  • 从 Gradescope 获取课程和作业- 使用自然语言查询您的 Gradescope 课程和作业,获取提交状态等等!

  • 获取课程

  • 获取模块

  • 获取模块项

  • 获取文件 URL

  • 获取日历事件

  • 获取作业

  • 还有更多...

Related MCP server: Canvas MCP Server V2.0

用法

事先记下以下事项:

  1. Canvas API 密钥来自Canvas > Account > Settings > Approved Integrations > New Access Token

  2. Gemini API 密钥来自https://aistudio.google.com/app/apikey

  3. Gradescope 电子邮件和密码https://www.gradescope.com/

通过 Smithery 安装(首选

要通过Smithery自动为 Claude Desktop 安装 Canvas MCP:

npx -y @smithery/cli install @aryankeluskar/canvas-mcp --client claude

或者,对于 Cursor IDE,将 canvas-mcp 与其他模型一起使用:

npx -y @smithery/cli install @aryankeluskar/canvas-mcp --client cursor

或者,对于 Windsurf:

npx -y @smithery/cli install @aryankeluskar/canvas-mcp --client windsurf

手动安装(仅适用于本地实例)

下载存储库并运行以下命令:

git clone https://github.com/aryankeluskar/canvas-mcp.git cd canvas-mcp # Install dependencies with uv (recommended) pip install uv uv venv source .venv/bin/activate # On Windows: .venv\Scripts\activate uv pip install -r requirements.txt # Or install with pip pip install -r requirements.txt

手动配置

在根目录中创建一个.env文件,其中包含以下环境变量:

CANVAS_API_KEY=your_canvas_api_key GEMINI_API_KEY=your_gemini_api_key

将以下内容添加到您的mcp.jsonclaude_desktop_config.json文件中:

{ "mcpServers": { "canvas": { "command": "uv", "args": [ "--directory", "/Users/aryank/Developer/canvas-mcp", "run", "canvas.py" ] } } }

Aryan Keluskar建造 :)

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aryankeluskar/canvas-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server