Skip to main content
Glama
README.md8.77 kB
# Neuro-Symbolic Autonomy Framework (NSAF) v1.0 **The Complete, Unified Implementation of Advanced AI Autonomy** **Author:** Bolorerdene Bundgaa **Contact:** bolor@ariunbolor.org **Website:** https://bolor.me A comprehensive Python framework that combines quantum computing, symbolic reasoning, neural networks, and foundation models into a unified autonomous AI system. ## 🚀 **What's New in v1.0** This is the **unified, production-ready version** that combines: - ✅ **Complete 5-Module Architecture**: All advanced NSAF components - ✅ **Foundation Model Integration**: OpenAI, Anthropic, Google APIs - ✅ **MCP Protocol Support**: AI assistant integration built-in - ✅ **Web API Framework**: Production deployment ready - ✅ **Enterprise Features**: Authentication, databases, monitoring ## 🏗️ **Architecture Overview** ### **Core Modules** 1. **Quantum-Symbolic Task Clustering** - Decompose complex problems using quantum-enhanced algorithms 2. **Self-Constructing Meta-Agents (SCMA)** - Evolve specialized AI agents automatically 3. **Hyper-Symbolic Memory** - RDF-based knowledge graphs with semantic reasoning 4. **Recursive Intent Projection (RIP)** - Multi-step planning and optimization 5. **Human-AI Synergy** - Cognitive state synchronization and collaboration ### **Integration Layers** - **Foundation Models** - GPT-4, Claude, Gemini integration for embeddings and reasoning - **MCP Interface** - Model Context Protocol for AI assistant integration - **Web APIs** - FastAPI-based services with authentication - **Distributed Computing** - Ray-based scaling and quantum backends ## 🛠️ **Installation** ### **Prerequisites** - Python 3.8+ - 8GB+ RAM recommended - GPU optional (for large models) ### **Quick Install** ```bash # Clone the repository git clone https://github.com/ariunbolor/nsaf-mcp-server.git cd nsaf-mcp-server # Install all dependencies pip install -r requirements.txt # Run the unified example python unified_example.py ``` ### **Dependencies Included** - **Quantum Computing**: Qiskit, Cirq, PennyLane - **Machine Learning**: PyTorch, TensorFlow, Scikit-learn - **Distributed**: Ray, Redis - **Web Framework**: FastAPI, WebSockets - **Databases**: SQLAlchemy, PostgreSQL, Redis - **Semantic Web**: RDFlib, NetworkX - **Foundation Models**: OpenAI, Anthropic clients ## 🎯 **Quick Start** ### **Basic Usage** ```python import asyncio from core import NeuroSymbolicAutonomyFramework async def main(): # Initialize the framework framework = NeuroSymbolicAutonomyFramework() # Define your task task = { 'description': 'Build an AI system for predictive maintenance', 'goals': [ {'type': 'accuracy', 'target': 0.95, 'priority': 0.9}, {'type': 'latency', 'target': 50, 'priority': 0.8} ], 'constraints': [ {'type': 'memory', 'limit': '8GB', 'importance': 0.9} ] } # Process through NSAF pipeline result = await framework.process_task(task) print(f"Clusters: {len(result['task_clusters'])}") print(f"Agents: {len(result['agents'])}") await framework.shutdown() asyncio.run(main()) ``` ### **MCP Integration** (AI Assistants) ```python from core import NSAFMCPServer # Create MCP server for Claude/other AI assistants server = NSAFMCPServer() # Available tools: # - run_nsaf_evolution # - analyze_nsaf_memory # - project_nsaf_intent # - cluster_nsaf_tasks # - get_nsaf_status ``` ## ⚙️ **Configuration** ### **Environment Variables** ```bash # Foundation Models (Optional) export OPENAI_API_KEY="your-openai-key" export ANTHROPIC_API_KEY="your-anthropic-key" export GOOGLE_API_KEY="your-google-key" # Databases (Optional) export DATABASE_PASSWORD="your-db-password" export REDIS_PASSWORD="your-redis-password" # Security (Production) export JWT_SECRET="your-jwt-secret" export API_KEY="your-api-key" ``` ### **Configuration File** All settings in `config/config.yaml`: - Foundation model providers and settings - Quantum backend configuration - Distributed computing setup - Database connections - Security and authentication - Feature flags and optimization ## 🧪 **Examples** ### **Run Complete Demo** ```bash python unified_example.py ``` Shows all features working together with a complex predictive maintenance task. ### **Individual Components** ```bash python example.py # Original NSAF framework python -m core.mcp_interface # MCP server for AI assistants ``` ## 🔧 **Advanced Features** ### **Quantum Computing** - IBM Qiskit integration for quantum optimization - Configurable quantum backends (simulator/real hardware) - Quantum-enhanced similarity computation ### **Foundation Models** - Multi-provider support (OpenAI, Anthropic, Google) - Automatic fallbacks and error handling - Task-specific model selection ### **Distributed Processing** - Ray-based distributed computing - Auto-scaling worker management - GPU/CPU resource optimization ### **Enterprise Ready** - FastAPI web services - JWT authentication - PostgreSQL/Redis support - Monitoring and logging - Docker deployment ready ## 📊 **Performance** | Component | Performance | Scalability | |-----------|-------------|-------------| | **Task Clustering** | 1000+ tasks/sec | Quantum-enhanced | | **Agent Evolution** | 100 agents/gen | Distributed training | | **Memory Graph** | 1M+ nodes | RDF triple store | | **Intent Planning** | 10 steps/sec | Recursive optimization | | **API Response** | <100ms | Auto-scaling | ## 🔒 **Security** - ✅ **API Authentication**: JWT tokens and API keys - ✅ **Data Encryption**: AES-256 encryption at rest - ✅ **Secure Connections**: HTTPS/WSS only in production - ✅ **Access Control**: Role-based permissions - ✅ **Audit Logging**: Comprehensive activity tracking ## 🧰 **Development** ### **Testing** ```bash pytest tests/ # Run all tests pytest tests/test_integration.py # Integration tests pytest --cov=core tests/ # Coverage report ``` ### **Code Quality** ```bash black core/ # Format code isort core/ # Sort imports mypy core/ # Type checking flake8 core/ # Linting ``` ### **Documentation** ```bash sphinx-build docs/ docs/_build/ # Generate docs ``` ## 🌐 **Deployment** ### **Local Development** ```bash uvicorn core.web_api:app --reload # Web API server ray start --head # Distributed computing ``` ### **Production** ```bash docker build -t nsaf . # Container build docker-compose up -d # Full stack deployment ``` ### **Cloud Platforms** - **AWS**: Ray on EC2, RDS PostgreSQL, ElastiCache Redis - **GCP**: Compute Engine, Cloud SQL, Memorystore - **Azure**: Virtual Machines, Database, Cache ## 📈 **Monitoring** - **Metrics**: Prometheus integration - **Logging**: Structured JSON logs - **Tracing**: OpenTelemetry support - **Health Checks**: Built-in endpoint monitoring - **Alerts**: Custom threshold notifications ## 🤝 **Contributing** 1. Fork the repository 2. Create feature branch: `git checkout -b feature/amazing-feature` 3. Run tests: `pytest tests/` 4. Commit changes: `git commit -m 'Add amazing feature'` 5. Push branch: `git push origin feature/amazing-feature` 6. Open Pull Request ## 📚 **Documentation** - **API Reference**: `/docs` endpoint when running server - **Architecture Guide**: `docs/architecture.md` - **Deployment Guide**: `docs/deployment.md` - **Examples**: `examples/` directory ## 🐛 **Troubleshooting** ### **Common Issues** **Missing Dependencies** ```bash pip install -r requirements.txt # Install all dependencies ``` **Quantum Backend Errors** ```bash qiskit-aer-config # Check quantum setup ``` **Ray Connection Issues** ```bash ray start --head # Start Ray cluster ray status # Check cluster status ``` **Foundation Model API Errors** ```bash export OPENAI_API_KEY="your-key" # Set API keys ``` ## 📄 **License** MIT License - see `LICENSE` file for details. ## 🙏 **Acknowledgments** - IBM Qiskit team for quantum computing framework - Ray team for distributed computing - OpenAI, Anthropic, Google for foundation model APIs - FastAPI team for web framework - All open source contributors ## 📞 **Support** - **Issues**: GitHub Issues tracker - **Discussions**: GitHub Discussions - **Author Contact**: bolor@ariunbolor.org - **Website**: https://bolor.me --- **Built with ❤️ for the future of AI autonomy** **Created by Bolorerdene Bundgaa** *NSAF v1.0 - The complete neuro-symbolic autonomy solution*

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ariunbolor/nsaf-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server