Skip to main content
Glama

Memvid MCP Server

by angrysky56

Memvid MCP Server 🎥

A Model Context Protocol (MCP) server that exposes Memvid video memory functionalities to AI clients. This server allows you to encode text, PDFs, and other content into video memory format for efficient semantic search and chat interactions.

🌟 Features

  • Text Encoding: Add text chunks or full text documents to video memory
  • PDF Processing: Extract and encode content from PDF files
  • Video Memory Building: Generate compressed video representations of your data
  • Semantic Search: Query your encoded data using natural language
  • Chat Interface: Have conversations with your encoded knowledge base
  • Multi-Connection Support: Handle multiple concurrent client connections
  • Comprehensive Logging: Detailed logging to stderr for debugging
  • Graceful Shutdown: Proper resource cleanup and signal handling

📋 Requirements

  • Python 3.10 or higher
  • uv package manager
  • memvid package
  • MCP-compatible client (e.g., Claude Desktop)

🚀 Installation

1. Set up the environment

cd /memvid_mcp_server uv venv --python 3.12 --seed source .venv/bin/activate

2. Install dependencies

uv add -e .

H.265 Encoding with Docker

To enable H.265 video compression, you need to build the memvid-h265 Docker container. This container provides the necessary FFmpeg environment for H.265 encoding.

  1. Navigate to the memvid repository root:
    cd /memvid
  2. Build the Docker image:
    docker build -f docker/Dockerfile -t memvid-h265 docker/
    This command builds the Docker image named memvid-h265 using the Dockerfile located in the docker/ directory.

Once the Docker image is built, memvid will automatically detect and use it when video_codec='h265' is specified in build_video.

3. Test the server (optional)

uv run python memvid_mcp_server/main.py

⚙️ Configuration

Claude Desktop Setup

  1. Copy the example configuration:
cp example_mcp_config.json ~/.config/claude-desktop/config.json
  1. Or manually add to your Claude Desktop config:
{ "mcpServers": { "memvid-mcp-server": { "command": "uv", "args": [ "--directory", "/home/ty/Repositories/memvid_mcp_server", "run", "python", "memvid_mcp_server/main.py" ], "env": { "PYTHONPATH": "/home/ty/Repositories/memvid_mcp_server", "PYTHONWARNINGS": "ignore" } } } }
  1. Restart Claude Desktop to load the server.

🛠️ Available Tools

get_server_status

Check the current status of the memvid server including version information.

add_chunks

Add a list of text chunks to the encoder.

  • chunks: List of text strings to add

add_text

Add a single text document to the encoder.

  • text: Text content to add
  • metadata: Optional metadata dictionary

add_pdf

Process and add a PDF file to the encoder.

  • pdf_path: Path to the PDF file

build_video

Build the video memory from all added content.

  • video_path: Output path for the video file
  • index_path: Output path for the index file
  • codec: Video codec to use ('h265' or 'h264', default: 'h265')
  • show_progress: Whether to show progress during build (default: True)
  • auto_build_docker: Whether to auto-build docker if needed (default: True)
  • allow_fallback: Whether to allow fallback options (default: True)

search_memory

Perform semantic search on the built video memory.

  • query: Natural language search query
  • top_k: Number of results to return (default: 5)

chat_with_memvid

Have a conversation with your encoded knowledge base.

  • message: Message to send to the chat system

📖 Usage Workflow

  1. Add Content: Use add_text, add_chunks, or add_pdf to add your data
  2. Build Video: Use build_video to create the video memory representation
  3. Search or Chat: Use search_memory for queries or chat_with_memvid for conversations

🔧 Development

Testing

# Install development dependencies uv add --dev pytest pytest-asyncio black ruff mypy # Run tests uv run pytest # Format code uv run black memvid_mcp_server/ uv run ruff check memvid_mcp_server/

Debugging

  • Check logs in Claude Desktop: ~/Library/Logs/Claude/mcp*.log (macOS) or equivalent
  • Enable debug logging by setting LOG_LEVEL=DEBUG in environment
  • Use get_server_status tool to check server state

🔧 Troubleshooting

Common Issues

  1. JSON Parsing Errors: All output is properly redirected to stderr to prevent protocol interference
  2. Import Errors: The server gracefully handles missing memvid package with clear error messages
  3. Connection Issues: Check Claude Desktop logs and use get_server_status to diagnose issues
  4. Video Build Failures: Ensure sufficient disk space and valid paths

Logging Configuration

The server implements comprehensive stdout redirection to prevent any library output from interfering with the MCP JSON-RPC protocol:

  • All memvid operations are wrapped with stdout redirection
  • Progress bars, warnings, and model loading messages are captured
  • Only structured JSON responses are sent to Claude Desktop
  • All diagnostic information is logged to stderr

Error Messages

  • "Memvid not available": Install the memvid package: uv add memvid
  • "Video memory not built": Run build_video before searching or chatting
  • "LLM not available": Expected warning - memvid will work without external LLM providers

📄 License

MIT License - see the LICENSE file for details.

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

Generated with improvements for production reliability and MCP best practices.

Related MCP Servers

  • -
    security
    A
    license
    -
    quality
    A Model Context Protocol server that enables semantic search capabilities by providing tools to manage Qdrant vector database collections, process and embed documents using various embedding services, and perform semantic searches across vector embeddings.
    Last updated -
    89
    TypeScript
    MIT License
  • -
    security
    -
    license
    -
    quality
    A Model Context Protocol server that enables searching YouTube videos, retrieving and storing transcripts, and performing semantic search over video content without using the official YouTube API.
    Last updated -
    1
    Python
    MIT License
  • -
    security
    -
    license
    -
    quality
    Model Context Protocol server that enables generating videos from text prompts and/or images using AI models (Luma Ray2 Flash and Kling v1.6 Pro) with configurable parameters like aspect ratio, resolution, and duration.
    Last updated -
    1
    JavaScript
    MIT License
  • -
    security
    A
    license
    -
    quality
    A Model Context Protocol server that enables developers to integrate advanced text-to-speech and video translation capabilities into their applications through simple API calls.
    Last updated -
    Python
    MIT License

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/angrysky56/memvid_mcp_server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server