Skip to main content
Glama

get_work_queue_by_name

Retrieve work queue details from Prefect's workflow automation platform by specifying the queue name to monitor or manage workflow execution resources.

Instructions

Get a work queue by name.

Args: name: The work queue name

Returns: Work queue details

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
nameYes

Implementation Reference

  • The main handler implementation for the get_work_queue_by_name tool. It fetches the work queue details from Prefect using the provided name and optional work pool name, returning the data as MCP TextContent. The @mcp.tool decorator handles schema inference and registration.
    @mcp.tool async def get_work_queue_by_name( name: str, work_pool_name: Optional[str] = None, ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: """ Get a work queue by name. Args: name: The work queue name work_pool_name: Optional work pool name to scope the search Returns: Work queue details """ async with get_client() as client: work_queue = await client.read_work_queue_by_name( name=name, work_pool_name=work_pool_name ) return [types.TextContent(type="text", text=str(work_queue.model_dump()))]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/allen-munsch/mcp-prefect'

If you have feedback or need assistance with the MCP directory API, please join our Discord server