Skip to main content
Glama

get_flow_runs

Retrieve and filter workflow execution records by criteria like status, flow name, tags, or time range to monitor and analyze Prefect flow runs.

Instructions

Get a list of flow runs with optional filtering.

Args: limit: Maximum number of flow runs to return offset: Number of flow runs to skip flow_name: Filter by flow name state_type: Filter by state type (e.g., "RUNNING", "COMPLETED", "FAILED") state_name: Filter by state name deployment_id: Filter by deployment ID tags: Filter by tags start_time_before: ISO formatted datetime string start_time_after: ISO formatted datetime string

Returns: A list of flow runs with their details

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
deployment_idNo
flow_nameNo
limitNo
offsetNo
start_time_afterNo
start_time_beforeNo
state_nameNo
state_typeNo
tagsNo

Implementation Reference

  • The handler function implementing the 'get_flow_runs' tool logic. It queries the Prefect client for flow runs with applied filters, enriches with UI URLs, and returns as text content.
    @mcp.tool async def get_flow_runs( limit: Optional[int] = None, offset: Optional[int] = None, flow_name: Optional[str] = None, state_type: Optional[str] = None, state_name: Optional[str] = None, deployment_id: Optional[str] = None, tags: Optional[List[str]] = None, start_time_before: Optional[str] = None, start_time_after: Optional[str] = None, ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: """ Get a list of flow runs with optional filtering. Args: limit: Maximum number of flow runs to return offset: Number of flow runs to skip flow_name: Filter by flow name state_type: Filter by state type (e.g., "RUNNING", "COMPLETED", "FAILED") state_name: Filter by state name deployment_id: Filter by deployment ID tags: Filter by tags start_time_before: ISO formatted datetime string start_time_after: ISO formatted datetime string Returns: A list of flow runs with their details """ async with get_client() as client: # Build filter parameters filters = {} if flow_name: filters["flow_name"] = {"like_": f"%{flow_name}%"} if state_type: filters["state"] = {"type": {"any_": [state_type.upper()]}} if state_name: filters["state"] = {"name": {"any_": [state_name]}} if deployment_id: filters["deployment_id"] = {"eq_": UUID(deployment_id)} if tags: filters["tags"] = {"all_": tags} if start_time_after: filters["start_time"] = {"ge_": start_time_after} if start_time_before: if "start_time" in filters: filters["start_time"]["le_"] = start_time_before else: filters["start_time"] = {"le_": start_time_before} flow_runs = await client.read_flow_runs( limit=limit, offset=offset, **filters ) # Add UI links to each flow run flow_runs_result = { "flow_runs": [ { **flow_run.dict(), "ui_url": get_flow_run_url(str(flow_run.id)) } for flow_run in flow_runs ] } return [types.TextContent(type="text", text=str(flow_runs_result))]
  • The import statement in main.py that loads the flow_run module, triggering registration of the 'get_flow_runs' tool via its @mcp.tool decorator.
    if APIType.FLOW_RUN.value in apis: info("Loading Flow Run API...") from . import flow_run
  • Helper function used by the handler to generate UI URLs for flow runs.
    def get_flow_run_url(flow_run_id: str) -> str: base_url = PREFECT_API_URL.replace("/api", "") return f"{base_url}/flow-runs/{flow_run_id}"
  • The @mcp.tool decorator that registers the get_flow_runs function as an MCP tool.
    @mcp.tool async def get_flow_runs(

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/allen-munsch/mcp-prefect'

If you have feedback or need assistance with the MCP directory API, please join our Discord server