Skip to main content
Glama
v2-implementation-roadmap.md18.2 kB
# V2 Implementation Roadmap: Quick Start Guide **Ready-to-Execute Development Plan** **Start Date**: 2025-10-20 **Target Completion**: 4-5 weeks --- ## Overview This roadmap translates the [V2 AgentDB Integration Specification](./v2-agentdb-integration-spec.md) into actionable development tasks with clear priorities, dependencies, and acceptance criteria. --- ## Week 1: AgentDB Foundation ### Day 1-2: Environment Setup & Dependencies **Tasks**: ```bash # 1. Create feature branch git checkout -b feature/v2-agentdb-integration # 2. Install dependencies npm install agentdb pip install watchdog>=3.0.0 # 3. Create directory structure mkdir -p src/mcp_standards/memory mkdir -p src/mcp_standards/events mkdir -p src/mcp_standards/migration mkdir -p src/mcp_standards/benchmarks mkdir -p tests/unit/memory mkdir -p tests/integration/v2 mkdir -p tests/performance # 4. Update pyproject.toml # Add new dependencies (see spec section 9.2) ``` **Files to Create**: - `src/mcp_standards/memory/__init__.py` - `src/mcp_standards/events/__init__.py` - `src/mcp_standards/migration/__init__.py` - `src/mcp_standards/benchmarks/__init__.py` **Acceptance Criteria**: - ✅ Branch created and dependencies installed - ✅ Directory structure matches specification - ✅ No import errors when running `python -c "import mcp_standards"` --- ### Day 3-4: AgentDB Adapter Implementation **Priority**: 🔴 Critical Path **Implementation Order**: 1. **Create `agentdb_adapter.py`** (4-6 hours) ```python # File: src/mcp_standards/memory/agentdb_adapter.py # Reference: Spec Section 2.2 ``` - Implement `AgentDBAdapter.__init__()` with HNSW configuration - Implement `store()` method with embedding generation - Implement `search()` method with vector similarity - Add error handling and logging 2. **Create AgentDB subprocess wrapper** (2-3 hours) ```python # File: src/mcp_standards/memory/agentdb_wrapper.py # Fallback when native bindings unavailable ``` 3. **Write unit tests** (2-3 hours) ```python # File: tests/unit/memory/test_agentdb_adapter.py ``` **Acceptance Criteria**: - ✅ AgentDB adapter can store vectors - ✅ Search returns results with similarity scores - ✅ Embeddings generated correctly via EmbeddingManager - ✅ Unit tests pass with >80% coverage **Testing Commands**: ```bash pytest tests/unit/memory/test_agentdb_adapter.py -v pytest --cov=src/mcp_standards/memory/agentdb_adapter.py ``` --- ### Day 5: SQLite Adapter Enhancement **Priority**: 🟡 High **Implementation Order**: 1. **Create `sqlite_adapter.py`** (3-4 hours) ```python # File: src/mcp_standards/memory/sqlite_adapter.py # Reference: Spec Section 2.3 ``` - Add `agentdb_synced` column to existing tables - Implement `store_metadata()` method - Implement `query_audit_log()` method - Create `reasoning_episodes` table schema 2. **Write migration SQL** (1-2 hours) ```sql -- File: src/mcp_standards/migrations/v2_schema.sql ALTER TABLE pattern_frequency ADD COLUMN agentdb_synced BOOLEAN DEFAULT FALSE; CREATE TABLE reasoning_episodes (...); CREATE TABLE sync_metadata (...); ``` **Acceptance Criteria**: - ✅ SQLite adapter implements metadata storage - ✅ New tables created successfully - ✅ Backward compatible with v1 schema - ✅ Migration SQL tested on copy of production DB --- ### Day 6-7: Memory Router Implementation **Priority**: 🔴 Critical Path **Implementation Order**: 1. **Create `router.py`** (6-8 hours) ```python # File: src/mcp_standards/memory/router.py # Reference: Spec Section 2.1 ``` - Implement `MemoryRouter.__init__()` - Implement `store_pattern()` (dual storage) - Implement `search_patterns()` with query type routing - Implement `_merge_results()` for hybrid queries 2. **Integration tests** (3-4 hours) ```python # File: tests/integration/v2/test_memory_router.py ``` - Test semantic search routing - Test exact match routing - Test hybrid query merging - Test error handling **Acceptance Criteria**: - ✅ Router correctly dispatches to AgentDB vs SQLite - ✅ Hybrid queries merge results properly - ✅ All query types working (SEMANTIC, EXACT, AUDIT, TEMPORAL, HYBRID) - ✅ Integration tests pass **Testing Commands**: ```bash pytest tests/integration/v2/test_memory_router.py -v --log-cli-level=INFO ``` --- ## Week 2: Pattern Extractor Integration ### Day 8-9: Pattern Extractor Modification **Priority**: 🔴 Critical Path **Tasks**: 1. **Modify `pattern_extractor.py`** (6-8 hours) - Replace direct SQLite calls with `memory_router` calls - Add `_store_pattern_hybrid()` method - Implement `_check_semantic_promotion()` with clustering - Reduce promotion threshold from 3 → 2 2. **Update tests** (2-3 hours) ```python # File: tests/integration/test_pattern_learning.py ``` - Test semantic clustering promotion - Test that 2 similar patterns trigger promotion - Verify AgentDB storage **Acceptance Criteria**: - ✅ Patterns stored in both AgentDB (vector) and SQLite (metadata) - ✅ Semantic clustering triggers promotion at threshold 2 - ✅ Existing v1 pattern detection logic unchanged - ✅ All pattern learning tests pass **Migration Note**: Existing `pattern_extractor.py` is 513 LOC. Changes are additive (not rewrite): - Add `memory_router` parameter to `__init__` (~5 lines) - Replace `_update_pattern_frequency()` call with `_store_pattern_hybrid()` (~20 lines) - Add `_check_semantic_promotion()` method (~50 lines) - Add `_promote_pattern_cluster()` method (~30 lines) --- ### Day 10-11: Benchmarking & Performance Tuning **Priority**: 🟢 Medium **Tasks**: 1. **Create benchmark suite** (4-5 hours) ```python # File: src/mcp_standards/benchmarks/performance.py # Reference: Spec Section 6.2 ``` - Implement `benchmark_startup()` - Implement `benchmark_search()` - Implement `benchmark_pattern_extraction()` 2. **Run benchmarks and optimize** (3-4 hours) ```bash python -m mcp_standards.benchmarks.performance --output results.json ``` - Tune HNSW parameters (M, ef_construction, ef_search) - Test memory vs disk mode - Profile slow operations **Acceptance Criteria**: - ✅ Startup time <10ms (disk mode) - ✅ Search time <1ms (P95) - ✅ Pattern extraction <5ms average - ✅ Benchmark results documented **Performance Tuning Checklist**: ```yaml HNSW Parameters: - M: 16 (default) → Test: 12, 16, 24 - ef_construction: 200 → Test: 150, 200, 300 - ef_search: 50 → Test: 30, 50, 100 Mode Selection: - disk: <10ms startup ✅ - memory: ~100ms startup, faster search Embedding Batch Size: - Test: 16, 32, 64, 128 ``` --- ### Day 12-13: Server Integration & MCP Tools **Priority**: 🔴 Critical Path **Tasks**: 1. **Update `server.py`** (4-5 hours) - Initialize `MemoryRouter` in `__init__` - Add new MCP tools: `semantic_search_patterns`, `cluster_related_patterns` - Update existing tools to use router - Add tool handlers 2. **Test MCP integration** (2-3 hours) ```python # File: tests/integration/test_mcp_tools_v2.py ``` - Test semantic search tool - Test clustering tool - Verify backward compatibility with v1 tools **New MCP Tools**: ```python # semantic_search_patterns # cluster_related_patterns # record_reasoning_outcome (Phase 3) # get_pattern_success_rate (Phase 3) ``` **Acceptance Criteria**: - ✅ MCP server starts without errors - ✅ New tools callable via MCP protocol - ✅ Existing v1 tools still work - ✅ Integration tests pass --- ### Day 14: Week 2 Review & Testing **Tasks**: - Run full test suite - Fix any failing tests - Code review (self-review using checklist) - Update documentation for completed features **Testing Commands**: ```bash # Run all tests pytest tests/ -v --cov=src/mcp_standards # Run only v2 tests pytest tests/integration/v2/ tests/unit/memory/ -v # Benchmark python -m mcp_standards.benchmarks.performance ``` --- ## Week 3: Event-Driven Architecture ### Day 15-16: Event Bus Implementation **Priority**: 🟡 High **Tasks**: 1. **Create `event_bus.py`** (3-4 hours) ```python # File: src/mcp_standards/events/event_bus.py # Reference: Spec Section 3.3 ``` - Implement `Event` dataclass - Implement `EventBus` with subscribe/emit - Add async event processing loop - Add event type enum 2. **Create event types** (1-2 hours) ```python # File: src/mcp_standards/events/types.py class EventType(Enum): PATTERN_PROMOTED = "pattern_promoted" CONFIG_CHANGED = "config_changed" CLAUDEMD_UPDATED = "claudemd_updated" REASONING_OUTCOME = "reasoning_outcome" ``` 3. **Unit tests** (2-3 hours) ```python # File: tests/unit/events/test_event_bus.py ``` **Acceptance Criteria**: - ✅ Event bus can emit events - ✅ Subscribers receive events asynchronously - ✅ Event processing loop handles errors gracefully - ✅ Unit tests pass --- ### Day 17-18: File Watcher & Config Monitor **Priority**: 🟡 High **Tasks**: 1. **Create `config_watcher.py`** (4-5 hours) ```python # File: src/mcp_standards/events/config_watcher.py # Uses: watchdog library ``` - Implement file system monitoring (inotify/FSEvents) - Watch for changes to: `.editorconfig`, `pyproject.toml`, etc. - Emit `config_changed` events 2. **Integration with event bus** (2-3 hours) - Connect watcher to event bus - Add event handlers - Test end-to-end flow **Acceptance Criteria**: - ✅ File watcher detects config file changes - ✅ Events emitted on file modification - ✅ No memory leaks from file watching - ✅ Cross-platform support (macOS, Linux, Windows) **Testing**: ```bash # Manual test echo "# test" >> .editorconfig # Should see event emitted in logs ``` --- ### Day 19-20: CLAUDE.md Manager Enhancement **Priority**: 🟡 High **Tasks**: 1. **Enhance `claudemd_manager.py`** (5-6 hours) - Add event bus subscription - Implement `_on_pattern_promoted()` handler - Implement `_generate_content_semantic()` using AgentDB - Implement `_cluster_patterns_semantically()` 2. **Create `diff_learner.py`** (3-4 hours) ```python # File: src/mcp_standards/intelligence/diff_learner.py ``` - Analyze CLAUDE.md backups - Extract user-added preferences - Learn from manual edits **Acceptance Criteria**: - ✅ CLAUDE.md auto-updates when patterns promoted - ✅ No manual trigger needed - ✅ Backup created before each update - ✅ Semantic grouping improves organization --- ### Day 21: Proactive Suggester **Priority**: 🟢 Medium **Tasks**: 1. **Create `proactive_suggester.py`** (3-4 hours) ```python # File: src/mcp_standards/intelligence/proactive_suggester.py ``` - Background job (runs every 5 minutes) - Checks for patterns ready for promotion - Sends MCP notifications 2. **MCP notification integration** (2-3 hours) - Research MCP notification protocol - Implement notification sender - Test notifications in Claude Desktop **Acceptance Criteria**: - ✅ Background job runs periodically - ✅ Detects patterns ready for CLAUDE.md - ✅ Notifications appear in Claude Desktop - ✅ No performance impact from background job --- ## Week 4: ReasoningBank & Polish ### Day 22-23: ReasoningBank Implementation **Priority**: 🟢 Medium **Tasks**: 1. **Create `reasoning_bank.py`** (4-5 hours) ```python # File: src/mcp_standards/intelligence/reasoning_bank.py # Reference: Spec Section 5.2 ``` - Implement `record_outcome()` - Implement `get_pattern_success_rate()` - Implement Bayesian confidence adjustment 2. **Add MCP tools** (2-3 hours) - `record_reasoning_outcome` - `get_pattern_success_rate` 3. **Integration** (2-3 hours) - Hook into pattern application flow - Auto-detect outcomes (success/failure) - Update confidence scores **Acceptance Criteria**: - ✅ Outcomes recorded in `reasoning_episodes` table - ✅ Confidence adjusts based on success rate - ✅ Failed patterns demoted automatically - ✅ MCP tools working --- ### Day 24-25: Migration Tool **Priority**: 🔴 Critical Path (for v2 release) **Tasks**: 1. **Create `v2_migrator.py`** (6-8 hours) ```python # File: src/mcp_standards/migration/v2_migrator.py # Reference: Spec Section 4.1 ``` - Implement backup creation - Implement schema migration - Implement pattern migration with embeddings - Implement verification 2. **Create migration CLI** (2-3 hours) ```python # File: src/mcp_standards/cli/migrate.py ``` - CLI interface using `click` - Progress reporting - Dry-run mode **Acceptance Criteria**: - ✅ Migrates v1 database to v2 successfully - ✅ All patterns have embeddings in AgentDB - ✅ Data integrity verified - ✅ Rollback works if migration fails **Testing**: ```bash # Dry run mcp-standards migrate --db-path ~/.mcp-standards/knowledge.db --dry-run # Actual migration mcp-standards migrate --db-path ~/.mcp-standards/knowledge.db ``` --- ### Day 26-27: Testing & Bug Fixes **Priority**: 🔴 Critical Path **Tasks**: 1. **Re-enable disabled tests** (4-6 hours) - Migrate tests from `tests/_disabled/` - Update for v2 architecture - Fix any breaking changes 2. **Integration testing** (3-4 hours) - End-to-end workflow tests - Test migration on real v1 database - Test MCP server with Claude Desktop 3. **Bug fixes** (4-6 hours) - Fix any issues found during testing - Address edge cases - Performance optimizations **Acceptance Criteria**: - ✅ Test coverage >80% - ✅ All tests passing - ✅ No critical bugs - ✅ Migration tested on production data --- ### Day 28: Documentation & Release **Priority**: 🟡 High **Tasks**: 1. **Update documentation** (4-5 hours) - Update README.md - Update ARCHITECTURE.md - Create MIGRATION.md guide - Update API documentation 2. **Create release notes** (2-3 hours) ```markdown # v2.0.0 Release Notes ## Breaking Changes - Migration required from v1 - New dependency: agentdb ## New Features - Semantic pattern matching - Event-driven CLAUDE.md updates - ReasoningBank outcome tracking - <10ms startup, <1ms search ## Migration Guide [Link to MIGRATION.md] ``` 3. **Prepare release** (1-2 hours) - Tag release: `v2.0.0` - Create GitHub release - Update PyPI package --- ## Week 5: Optional Enhancements ### Stretch Goals (If Time Permits) 1. **Multi-Agent Coordination** (3-5 days) - Swarm memory layer - Cross-project pattern sharing - Reference: Spec Section 1.1 (optional component) 2. **Predictive Corrections** (2-3 days) - Predict next likely correction - Proactive suggestions - Reference: Spec Section 5.1 (new tool) 3. **Web UI for Pattern Management** (3-5 days) - View learned patterns - Manage confidence scores - Visualize pattern clusters --- ## Daily Checklist Each day, before committing code: ```markdown - [ ] All unit tests pass locally - [ ] Code formatted with ruff - [ ] Type hints added (mypy compatible) - [ ] Docstrings updated - [ ] No TODO comments in committed code - [ ] Benchmark tests run (if performance-related) - [ ] Git commit follows conventional commits format - [ ] No secrets or credentials in code ``` --- ## Git Workflow ```bash # Daily workflow git checkout feature/v2-agentdb-integration git pull origin feature/v2-agentdb-integration # Make changes... # Before commit pytest tests/ -v --cov=src/mcp_standards ruff check src/ tests/ mypy src/ # Commit git add . git commit -m "feat(memory): implement AgentDB adapter with HNSW search - Add AgentDBAdapter class with vector storage - Implement semantic search with <1ms target - Add embedding generation via EmbeddingManager - Include unit tests with >80% coverage Refs: #123" # Push daily git push origin feature/v2-agentdb-integration ``` --- ## Success Metrics Tracking Track these metrics throughout development: | Metric | Target | Current | Status | |--------|--------|---------|--------| | Startup Time | <10ms | - | ⏳ | | Search Time (P95) | <1ms | - | ⏳ | | Pattern Extraction | <5ms | - | ⏳ | | Test Coverage | >80% | - | ⏳ | | Semantic Match Accuracy | >85% | - | ⏳ | | Promotion Threshold | 2 patterns | 3 | ⏳ | Update daily in project tracking board. --- ## Troubleshooting Common Issues ### AgentDB Installation Issues ```bash # If npm install agentdb fails # Try: npm cache clean --force npm install agentdb # If Python bindings unavailable # Fallback to subprocess wrapper (implemented in spec) ``` ### Performance Not Meeting Targets ```python # Checklist: # 1. HNSW parameters tuned? # - M=16, ef_construction=200, ef_search=50 # 2. Using disk mode for <10ms startup? # 3. Embeddings cached? # 4. SQLite WAL mode enabled? # 5. Proper indexes on SQLite tables? ``` ### Migration Failures ```bash # Always create backup first cp ~/.mcp-standards/knowledge.db ~/.mcp-standards/knowledge.backup.db # If migration fails, rollback mv ~/.mcp-standards/knowledge.backup.db ~/.mcp-standards/knowledge.db ``` --- ## Resources - [V2 AgentDB Integration Spec](./v2-agentdb-integration-spec.md) - Complete technical specification - [V2 System Analysis](../v2-system-analysis.md) - Gap analysis and requirements - [AgentDB Documentation](https://agentdb.ruv.io) - AgentDB API reference - [Context Engineering Guide](https://github.com/coleam00/context-engineering-intro) - Token optimization principles --- ## Questions & Support **Technical Questions**: - Review spec sections for implementation details - Check existing v1 code for patterns - Reference AgentDB documentation **Architecture Decisions**: - Refer to Architecture Decision Records (ADRs) in spec - Consult with team lead **Blocked?**: - Create GitHub issue with "blocked" label - Document blocking issue and alternatives considered --- **Ready to Start**: ✅ **First Command**: ```bash git checkout -b feature/v2-agentdb-integration mkdir -p src/mcp_standards/memory code src/mcp_standards/memory/agentdb_adapter.py ``` **Let's build v2! 🚀**

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/airmcp-com/mcp-standards'

If you have feedback or need assistance with the MCP directory API, please join our Discord server