v2-implementation-roadmap.md•18.2 kB
# V2 Implementation Roadmap: Quick Start Guide
**Ready-to-Execute Development Plan**
**Start Date**: 2025-10-20
**Target Completion**: 4-5 weeks
---
## Overview
This roadmap translates the [V2 AgentDB Integration Specification](./v2-agentdb-integration-spec.md) into actionable development tasks with clear priorities, dependencies, and acceptance criteria.
---
## Week 1: AgentDB Foundation
### Day 1-2: Environment Setup & Dependencies
**Tasks**:
```bash
# 1. Create feature branch
git checkout -b feature/v2-agentdb-integration
# 2. Install dependencies
npm install agentdb
pip install watchdog>=3.0.0
# 3. Create directory structure
mkdir -p src/mcp_standards/memory
mkdir -p src/mcp_standards/events
mkdir -p src/mcp_standards/migration
mkdir -p src/mcp_standards/benchmarks
mkdir -p tests/unit/memory
mkdir -p tests/integration/v2
mkdir -p tests/performance
# 4. Update pyproject.toml
# Add new dependencies (see spec section 9.2)
```
**Files to Create**:
- `src/mcp_standards/memory/__init__.py`
- `src/mcp_standards/events/__init__.py`
- `src/mcp_standards/migration/__init__.py`
- `src/mcp_standards/benchmarks/__init__.py`
**Acceptance Criteria**:
- ✅ Branch created and dependencies installed
- ✅ Directory structure matches specification
- ✅ No import errors when running `python -c "import mcp_standards"`
---
### Day 3-4: AgentDB Adapter Implementation
**Priority**: 🔴 Critical Path
**Implementation Order**:
1. **Create `agentdb_adapter.py`** (4-6 hours)
```python
# File: src/mcp_standards/memory/agentdb_adapter.py
# Reference: Spec Section 2.2
```
- Implement `AgentDBAdapter.__init__()` with HNSW configuration
- Implement `store()` method with embedding generation
- Implement `search()` method with vector similarity
- Add error handling and logging
2. **Create AgentDB subprocess wrapper** (2-3 hours)
```python
# File: src/mcp_standards/memory/agentdb_wrapper.py
# Fallback when native bindings unavailable
```
3. **Write unit tests** (2-3 hours)
```python
# File: tests/unit/memory/test_agentdb_adapter.py
```
**Acceptance Criteria**:
- ✅ AgentDB adapter can store vectors
- ✅ Search returns results with similarity scores
- ✅ Embeddings generated correctly via EmbeddingManager
- ✅ Unit tests pass with >80% coverage
**Testing Commands**:
```bash
pytest tests/unit/memory/test_agentdb_adapter.py -v
pytest --cov=src/mcp_standards/memory/agentdb_adapter.py
```
---
### Day 5: SQLite Adapter Enhancement
**Priority**: 🟡 High
**Implementation Order**:
1. **Create `sqlite_adapter.py`** (3-4 hours)
```python
# File: src/mcp_standards/memory/sqlite_adapter.py
# Reference: Spec Section 2.3
```
- Add `agentdb_synced` column to existing tables
- Implement `store_metadata()` method
- Implement `query_audit_log()` method
- Create `reasoning_episodes` table schema
2. **Write migration SQL** (1-2 hours)
```sql
-- File: src/mcp_standards/migrations/v2_schema.sql
ALTER TABLE pattern_frequency ADD COLUMN agentdb_synced BOOLEAN DEFAULT FALSE;
CREATE TABLE reasoning_episodes (...);
CREATE TABLE sync_metadata (...);
```
**Acceptance Criteria**:
- ✅ SQLite adapter implements metadata storage
- ✅ New tables created successfully
- ✅ Backward compatible with v1 schema
- ✅ Migration SQL tested on copy of production DB
---
### Day 6-7: Memory Router Implementation
**Priority**: 🔴 Critical Path
**Implementation Order**:
1. **Create `router.py`** (6-8 hours)
```python
# File: src/mcp_standards/memory/router.py
# Reference: Spec Section 2.1
```
- Implement `MemoryRouter.__init__()`
- Implement `store_pattern()` (dual storage)
- Implement `search_patterns()` with query type routing
- Implement `_merge_results()` for hybrid queries
2. **Integration tests** (3-4 hours)
```python
# File: tests/integration/v2/test_memory_router.py
```
- Test semantic search routing
- Test exact match routing
- Test hybrid query merging
- Test error handling
**Acceptance Criteria**:
- ✅ Router correctly dispatches to AgentDB vs SQLite
- ✅ Hybrid queries merge results properly
- ✅ All query types working (SEMANTIC, EXACT, AUDIT, TEMPORAL, HYBRID)
- ✅ Integration tests pass
**Testing Commands**:
```bash
pytest tests/integration/v2/test_memory_router.py -v --log-cli-level=INFO
```
---
## Week 2: Pattern Extractor Integration
### Day 8-9: Pattern Extractor Modification
**Priority**: 🔴 Critical Path
**Tasks**:
1. **Modify `pattern_extractor.py`** (6-8 hours)
- Replace direct SQLite calls with `memory_router` calls
- Add `_store_pattern_hybrid()` method
- Implement `_check_semantic_promotion()` with clustering
- Reduce promotion threshold from 3 → 2
2. **Update tests** (2-3 hours)
```python
# File: tests/integration/test_pattern_learning.py
```
- Test semantic clustering promotion
- Test that 2 similar patterns trigger promotion
- Verify AgentDB storage
**Acceptance Criteria**:
- ✅ Patterns stored in both AgentDB (vector) and SQLite (metadata)
- ✅ Semantic clustering triggers promotion at threshold 2
- ✅ Existing v1 pattern detection logic unchanged
- ✅ All pattern learning tests pass
**Migration Note**:
Existing `pattern_extractor.py` is 513 LOC. Changes are additive (not rewrite):
- Add `memory_router` parameter to `__init__` (~5 lines)
- Replace `_update_pattern_frequency()` call with `_store_pattern_hybrid()` (~20 lines)
- Add `_check_semantic_promotion()` method (~50 lines)
- Add `_promote_pattern_cluster()` method (~30 lines)
---
### Day 10-11: Benchmarking & Performance Tuning
**Priority**: 🟢 Medium
**Tasks**:
1. **Create benchmark suite** (4-5 hours)
```python
# File: src/mcp_standards/benchmarks/performance.py
# Reference: Spec Section 6.2
```
- Implement `benchmark_startup()`
- Implement `benchmark_search()`
- Implement `benchmark_pattern_extraction()`
2. **Run benchmarks and optimize** (3-4 hours)
```bash
python -m mcp_standards.benchmarks.performance --output results.json
```
- Tune HNSW parameters (M, ef_construction, ef_search)
- Test memory vs disk mode
- Profile slow operations
**Acceptance Criteria**:
- ✅ Startup time <10ms (disk mode)
- ✅ Search time <1ms (P95)
- ✅ Pattern extraction <5ms average
- ✅ Benchmark results documented
**Performance Tuning Checklist**:
```yaml
HNSW Parameters:
- M: 16 (default) → Test: 12, 16, 24
- ef_construction: 200 → Test: 150, 200, 300
- ef_search: 50 → Test: 30, 50, 100
Mode Selection:
- disk: <10ms startup ✅
- memory: ~100ms startup, faster search
Embedding Batch Size:
- Test: 16, 32, 64, 128
```
---
### Day 12-13: Server Integration & MCP Tools
**Priority**: 🔴 Critical Path
**Tasks**:
1. **Update `server.py`** (4-5 hours)
- Initialize `MemoryRouter` in `__init__`
- Add new MCP tools: `semantic_search_patterns`, `cluster_related_patterns`
- Update existing tools to use router
- Add tool handlers
2. **Test MCP integration** (2-3 hours)
```python
# File: tests/integration/test_mcp_tools_v2.py
```
- Test semantic search tool
- Test clustering tool
- Verify backward compatibility with v1 tools
**New MCP Tools**:
```python
# semantic_search_patterns
# cluster_related_patterns
# record_reasoning_outcome (Phase 3)
# get_pattern_success_rate (Phase 3)
```
**Acceptance Criteria**:
- ✅ MCP server starts without errors
- ✅ New tools callable via MCP protocol
- ✅ Existing v1 tools still work
- ✅ Integration tests pass
---
### Day 14: Week 2 Review & Testing
**Tasks**:
- Run full test suite
- Fix any failing tests
- Code review (self-review using checklist)
- Update documentation for completed features
**Testing Commands**:
```bash
# Run all tests
pytest tests/ -v --cov=src/mcp_standards
# Run only v2 tests
pytest tests/integration/v2/ tests/unit/memory/ -v
# Benchmark
python -m mcp_standards.benchmarks.performance
```
---
## Week 3: Event-Driven Architecture
### Day 15-16: Event Bus Implementation
**Priority**: 🟡 High
**Tasks**:
1. **Create `event_bus.py`** (3-4 hours)
```python
# File: src/mcp_standards/events/event_bus.py
# Reference: Spec Section 3.3
```
- Implement `Event` dataclass
- Implement `EventBus` with subscribe/emit
- Add async event processing loop
- Add event type enum
2. **Create event types** (1-2 hours)
```python
# File: src/mcp_standards/events/types.py
class EventType(Enum):
PATTERN_PROMOTED = "pattern_promoted"
CONFIG_CHANGED = "config_changed"
CLAUDEMD_UPDATED = "claudemd_updated"
REASONING_OUTCOME = "reasoning_outcome"
```
3. **Unit tests** (2-3 hours)
```python
# File: tests/unit/events/test_event_bus.py
```
**Acceptance Criteria**:
- ✅ Event bus can emit events
- ✅ Subscribers receive events asynchronously
- ✅ Event processing loop handles errors gracefully
- ✅ Unit tests pass
---
### Day 17-18: File Watcher & Config Monitor
**Priority**: 🟡 High
**Tasks**:
1. **Create `config_watcher.py`** (4-5 hours)
```python
# File: src/mcp_standards/events/config_watcher.py
# Uses: watchdog library
```
- Implement file system monitoring (inotify/FSEvents)
- Watch for changes to: `.editorconfig`, `pyproject.toml`, etc.
- Emit `config_changed` events
2. **Integration with event bus** (2-3 hours)
- Connect watcher to event bus
- Add event handlers
- Test end-to-end flow
**Acceptance Criteria**:
- ✅ File watcher detects config file changes
- ✅ Events emitted on file modification
- ✅ No memory leaks from file watching
- ✅ Cross-platform support (macOS, Linux, Windows)
**Testing**:
```bash
# Manual test
echo "# test" >> .editorconfig
# Should see event emitted in logs
```
---
### Day 19-20: CLAUDE.md Manager Enhancement
**Priority**: 🟡 High
**Tasks**:
1. **Enhance `claudemd_manager.py`** (5-6 hours)
- Add event bus subscription
- Implement `_on_pattern_promoted()` handler
- Implement `_generate_content_semantic()` using AgentDB
- Implement `_cluster_patterns_semantically()`
2. **Create `diff_learner.py`** (3-4 hours)
```python
# File: src/mcp_standards/intelligence/diff_learner.py
```
- Analyze CLAUDE.md backups
- Extract user-added preferences
- Learn from manual edits
**Acceptance Criteria**:
- ✅ CLAUDE.md auto-updates when patterns promoted
- ✅ No manual trigger needed
- ✅ Backup created before each update
- ✅ Semantic grouping improves organization
---
### Day 21: Proactive Suggester
**Priority**: 🟢 Medium
**Tasks**:
1. **Create `proactive_suggester.py`** (3-4 hours)
```python
# File: src/mcp_standards/intelligence/proactive_suggester.py
```
- Background job (runs every 5 minutes)
- Checks for patterns ready for promotion
- Sends MCP notifications
2. **MCP notification integration** (2-3 hours)
- Research MCP notification protocol
- Implement notification sender
- Test notifications in Claude Desktop
**Acceptance Criteria**:
- ✅ Background job runs periodically
- ✅ Detects patterns ready for CLAUDE.md
- ✅ Notifications appear in Claude Desktop
- ✅ No performance impact from background job
---
## Week 4: ReasoningBank & Polish
### Day 22-23: ReasoningBank Implementation
**Priority**: 🟢 Medium
**Tasks**:
1. **Create `reasoning_bank.py`** (4-5 hours)
```python
# File: src/mcp_standards/intelligence/reasoning_bank.py
# Reference: Spec Section 5.2
```
- Implement `record_outcome()`
- Implement `get_pattern_success_rate()`
- Implement Bayesian confidence adjustment
2. **Add MCP tools** (2-3 hours)
- `record_reasoning_outcome`
- `get_pattern_success_rate`
3. **Integration** (2-3 hours)
- Hook into pattern application flow
- Auto-detect outcomes (success/failure)
- Update confidence scores
**Acceptance Criteria**:
- ✅ Outcomes recorded in `reasoning_episodes` table
- ✅ Confidence adjusts based on success rate
- ✅ Failed patterns demoted automatically
- ✅ MCP tools working
---
### Day 24-25: Migration Tool
**Priority**: 🔴 Critical Path (for v2 release)
**Tasks**:
1. **Create `v2_migrator.py`** (6-8 hours)
```python
# File: src/mcp_standards/migration/v2_migrator.py
# Reference: Spec Section 4.1
```
- Implement backup creation
- Implement schema migration
- Implement pattern migration with embeddings
- Implement verification
2. **Create migration CLI** (2-3 hours)
```python
# File: src/mcp_standards/cli/migrate.py
```
- CLI interface using `click`
- Progress reporting
- Dry-run mode
**Acceptance Criteria**:
- ✅ Migrates v1 database to v2 successfully
- ✅ All patterns have embeddings in AgentDB
- ✅ Data integrity verified
- ✅ Rollback works if migration fails
**Testing**:
```bash
# Dry run
mcp-standards migrate --db-path ~/.mcp-standards/knowledge.db --dry-run
# Actual migration
mcp-standards migrate --db-path ~/.mcp-standards/knowledge.db
```
---
### Day 26-27: Testing & Bug Fixes
**Priority**: 🔴 Critical Path
**Tasks**:
1. **Re-enable disabled tests** (4-6 hours)
- Migrate tests from `tests/_disabled/`
- Update for v2 architecture
- Fix any breaking changes
2. **Integration testing** (3-4 hours)
- End-to-end workflow tests
- Test migration on real v1 database
- Test MCP server with Claude Desktop
3. **Bug fixes** (4-6 hours)
- Fix any issues found during testing
- Address edge cases
- Performance optimizations
**Acceptance Criteria**:
- ✅ Test coverage >80%
- ✅ All tests passing
- ✅ No critical bugs
- ✅ Migration tested on production data
---
### Day 28: Documentation & Release
**Priority**: 🟡 High
**Tasks**:
1. **Update documentation** (4-5 hours)
- Update README.md
- Update ARCHITECTURE.md
- Create MIGRATION.md guide
- Update API documentation
2. **Create release notes** (2-3 hours)
```markdown
# v2.0.0 Release Notes
## Breaking Changes
- Migration required from v1
- New dependency: agentdb
## New Features
- Semantic pattern matching
- Event-driven CLAUDE.md updates
- ReasoningBank outcome tracking
- <10ms startup, <1ms search
## Migration Guide
[Link to MIGRATION.md]
```
3. **Prepare release** (1-2 hours)
- Tag release: `v2.0.0`
- Create GitHub release
- Update PyPI package
---
## Week 5: Optional Enhancements
### Stretch Goals (If Time Permits)
1. **Multi-Agent Coordination** (3-5 days)
- Swarm memory layer
- Cross-project pattern sharing
- Reference: Spec Section 1.1 (optional component)
2. **Predictive Corrections** (2-3 days)
- Predict next likely correction
- Proactive suggestions
- Reference: Spec Section 5.1 (new tool)
3. **Web UI for Pattern Management** (3-5 days)
- View learned patterns
- Manage confidence scores
- Visualize pattern clusters
---
## Daily Checklist
Each day, before committing code:
```markdown
- [ ] All unit tests pass locally
- [ ] Code formatted with ruff
- [ ] Type hints added (mypy compatible)
- [ ] Docstrings updated
- [ ] No TODO comments in committed code
- [ ] Benchmark tests run (if performance-related)
- [ ] Git commit follows conventional commits format
- [ ] No secrets or credentials in code
```
---
## Git Workflow
```bash
# Daily workflow
git checkout feature/v2-agentdb-integration
git pull origin feature/v2-agentdb-integration
# Make changes...
# Before commit
pytest tests/ -v --cov=src/mcp_standards
ruff check src/ tests/
mypy src/
# Commit
git add .
git commit -m "feat(memory): implement AgentDB adapter with HNSW search
- Add AgentDBAdapter class with vector storage
- Implement semantic search with <1ms target
- Add embedding generation via EmbeddingManager
- Include unit tests with >80% coverage
Refs: #123"
# Push daily
git push origin feature/v2-agentdb-integration
```
---
## Success Metrics Tracking
Track these metrics throughout development:
| Metric | Target | Current | Status |
|--------|--------|---------|--------|
| Startup Time | <10ms | - | ⏳ |
| Search Time (P95) | <1ms | - | ⏳ |
| Pattern Extraction | <5ms | - | ⏳ |
| Test Coverage | >80% | - | ⏳ |
| Semantic Match Accuracy | >85% | - | ⏳ |
| Promotion Threshold | 2 patterns | 3 | ⏳ |
Update daily in project tracking board.
---
## Troubleshooting Common Issues
### AgentDB Installation Issues
```bash
# If npm install agentdb fails
# Try:
npm cache clean --force
npm install agentdb
# If Python bindings unavailable
# Fallback to subprocess wrapper (implemented in spec)
```
### Performance Not Meeting Targets
```python
# Checklist:
# 1. HNSW parameters tuned?
# - M=16, ef_construction=200, ef_search=50
# 2. Using disk mode for <10ms startup?
# 3. Embeddings cached?
# 4. SQLite WAL mode enabled?
# 5. Proper indexes on SQLite tables?
```
### Migration Failures
```bash
# Always create backup first
cp ~/.mcp-standards/knowledge.db ~/.mcp-standards/knowledge.backup.db
# If migration fails, rollback
mv ~/.mcp-standards/knowledge.backup.db ~/.mcp-standards/knowledge.db
```
---
## Resources
- [V2 AgentDB Integration Spec](./v2-agentdb-integration-spec.md) - Complete technical specification
- [V2 System Analysis](../v2-system-analysis.md) - Gap analysis and requirements
- [AgentDB Documentation](https://agentdb.ruv.io) - AgentDB API reference
- [Context Engineering Guide](https://github.com/coleam00/context-engineering-intro) - Token optimization principles
---
## Questions & Support
**Technical Questions**:
- Review spec sections for implementation details
- Check existing v1 code for patterns
- Reference AgentDB documentation
**Architecture Decisions**:
- Refer to Architecture Decision Records (ADRs) in spec
- Consult with team lead
**Blocked?**:
- Create GitHub issue with "blocked" label
- Document blocking issue and alternatives considered
---
**Ready to Start**: ✅
**First Command**:
```bash
git checkout -b feature/v2-agentdb-integration
mkdir -p src/mcp_standards/memory
code src/mcp_standards/memory/agentdb_adapter.py
```
**Let's build v2! 🚀**