pmis-summary.md•5.57 kB
# Package Manager Intelligence System - Executive Summary
## The Problem
Users repeatedly correct Claude about package manager preferences:
```
"Use uv not pip" ← Correction #1
"Use uv not pip!" ← Correction #2
"USE UV NOT PIP!!!" ← Correction #3
```
**Current System**: Requires 3-5 identical corrections before learning
## The Solution
**Package Manager Intelligence System (PMIS)** reduces corrections from 3-5 to 1-2 through five integrated components:
### 1. Intelligent Detection (0ms overhead)
Automatically detects preferred package manager from project files:
- `uv.lock` → uv (confidence: 0.9)
- `poetry.lock` → poetry (confidence: 0.9)
- `package-lock.json` → npm (confidence: 0.7)
**Impact**: Immediate context without user input
### 2. Semantic Clustering (AgentDB)
Merges similar corrections into single pattern:
- "use uv not pip" + "prefer uv" + "always use uv" → **1 pattern**
**Technology**: 384-dim embeddings, HNSW graph, <1ms search
**Impact**: 67% fewer corrections needed (3 → 1)
### 3. Bayesian Confidence Scoring
Updates confidence based on outcomes:
- SUCCESS: confidence × 1.2 (capped at 0.95)
- FAILURE: confidence × 0.6 (floor at 0.1)
- DECAY: -0.05/week if unused
**Impact**: Self-adjusting accuracy >90%
### 4. Cross-Project Learning
Shares patterns across similar projects:
- Django Project #1: "use pytest" → learned
- Django Project #2: "use pytest" → **auto-applied** (0 corrections!)
**Impact**: Zero-shot learning for new projects
### 5. Proactive Application
Predicts and applies before user asks:
```python
User: "install pytest"
[System detects uv.lock + finds pattern "use uv" (0.85 confidence)]
Claude: "uv pip install pytest" # Auto-applied!
```
**Impact**: Eliminates correction loop entirely
## Architecture
```
┌─────────────────────────────────────────────────────────┐
│ Package Manager Intelligence System │
│ │
│ ProjectFileDetector → SemanticClusterer (AgentDB) │
│ ↓ ↓ │
│ BayesianScorer ← CrossProjectLearner → ProactiveApp │
│ ↓ ↓ │
│ SQLite (audit) + AgentDB (vectors) → CLAUDE.md │
└─────────────────────────────────────────────────────────┘
```
**Hybrid Storage**:
- **AgentDB**: Fast semantic search (<1ms)
- **SQLite**: Audit trail, compliance, metadata
## Performance Targets
| Metric | Current | Target | Improvement |
|--------|---------|--------|-------------|
| Corrections to learn | 3-5 | 1-2 | **60-70% reduction** |
| Learning time | 2-3 days | Same session | **10x faster** |
| Detection latency | N/A | <10ms | **Instant** |
| Search latency | 50ms+ | <1ms | **50x faster** |
| Prediction accuracy | N/A | >85% | **New capability** |
| Context token reduction | 0 | -2,000 | **Less noise** |
## Key Algorithms
### Semantic Clustering
```python
# "use uv" + "prefer uv" → same pattern
embedding1 = embed("use uv not pip") # [0.234, -0.567, ...]
embedding2 = embed("prefer uv over pip") # [0.241, -0.562, ...]
similarity = cosine(embedding1, embedding2) # 0.93 → MERGE
```
### Bayesian Confidence
```python
# First correction
confidence = 0.4 (prior) + 0.3 (uv.lock detected) = 0.7
# Success → boost
confidence = 0.7 × 1.2 = 0.84
# Auto-apply threshold reached (>0.7)
```
### Cross-Project
```python
# Project 1: Django app, learned "use pytest"
# Project 2: New Django app
similar_projects = find_similar(project2) # Finds project1
patterns = get_patterns(similar_projects) # Gets "use pytest"
apply_pattern(project2, "use pytest") # 0 corrections!
```
## Implementation Roadmap
**Phase 1 (Week 1)**: Foundation
- Project file detection
- Database schema
- AgentDB setup
**Phase 2 (Week 2)**: Semantic Clustering
- Embedding generation
- Pattern merging
- Confidence scoring
**Phase 3 (Week 3)**: Cross-Project & Proactive
- Project profiles
- Command prediction
- Auto-application
**Phase 4 (Week 4)**: Polish & Deploy
- Performance optimization
- Error handling
- A/B testing
## Success Criteria
**Primary**: Reduce corrections from 3-5 to 1-2 (60-70% reduction)
**Secondary**:
- Prediction accuracy >85%
- False positive rate <5%
- End-to-end latency <50ms
- User satisfaction >4.0/5
## Innovation Highlights
1. **Hybrid Architecture**: AgentDB (speed) + SQLite (compliance)
2. **Zero-Configuration**: Auto-detects from project files
3. **Semantic Understanding**: Natural language clustering
4. **Self-Improving**: Bayesian updates from outcomes
5. **Cross-Project Intelligence**: Learn once, apply everywhere
## Business Value
**For Users**:
- Fewer repetitive corrections
- Faster learning
- Better cross-project experience
- Less context pollution
**For mcp-standards**:
- Differentiated feature (competitors lack this)
- Demonstrates AgentDB/ReasoningBank integration
- Measurable UX improvement
- Foundation for other preference learning
## Next Steps
1. Review design document: `/docs/architecture/package-manager-intelligence-system.md`
2. Approve architecture and algorithms
3. Begin Phase 1 implementation
4. Set up A/B test framework
---
**Contact**: See full specification in `package-manager-intelligence-system.md`