IMPLEMENTATION_ROADMAP.mdā¢19.8 kB
# Implementation Roadmap - Memory Architecture v2.0
**Version**: 2.0.0
**Status**: Design Phase
**Last Updated**: 2025-10-20
**Timeline**: 4 weeks (phased approach)
---
## Executive Summary
Phased implementation plan for the comprehensive memory architecture integrating SQLite, AgentDB, hooks system, skills auto-generation, and CLAUDE.md management. Each phase builds on the previous, with clear deliverables and success criteria.
---
## Phase 1: Foundation & Storage (Week 1)
### Objectives
- Implement dual-layer storage (SQLite + AgentDB)
- Create migration utilities from existing ReasoningBank
- Setup basic hooks infrastructure
- Validate core architecture
### Deliverables
#### 1.1 Dual-Layer Storage Implementation
**Files**:
- `src/mcp_standards/storage/dual_layer.py`
- `src/mcp_standards/storage/migration.py`
- `src/mcp_standards/storage/sync.py`
**Tasks**:
- [ ] Extend SQLite schema with new tables (embeddings, patterns, etc.)
- [ ] Integrate AgentDB adapter with configuration
- [ ] Implement reference ID synchronization
- [ ] Create migration script from existing ReasoningBank
- [ ] Add data consistency validation
**Success Criteria**:
- [ ] All new database tables created and indexed
- [ ] AgentDB connected with HNSW indexing enabled
- [ ] Existing episodes migrated with embeddings computed
- [ ] Reference ID system working bidirectionally
- [ ] 100% data consistency between SQLite and AgentDB
#### 1.2 Basic Hooks Infrastructure
**Files**:
- `src/mcp_standards/hooks/capture_hook.py` (enhance existing)
- `src/mcp_standards/hooks/event_router.py` (new)
- `~/.claude/hooks.json` (configuration)
**Tasks**:
- [ ] Enhance capture_hook.py with event routing
- [ ] Implement PreToolUse, PostToolUse, SessionEnd handlers
- [ ] Add error handling and resilience (always exit 0)
- [ ] Create hooks.json configuration template
- [ ] Setup async processing for non-blocking execution
**Success Criteria**:
- [ ] Hooks trigger on tool execution in Claude Code
- [ ] Events captured with <5ms overhead
- [ ] Error handling prevents any failures
- [ ] Hooks can be enabled/disabled via configuration
- [ ] Basic logging functional
#### 1.3 Migration & Data Validation
**Files**:
- `scripts/migrate_to_v2.py`
- `tests/test_migration.py`
**Tasks**:
- [ ] Create comprehensive migration script
- [ ] Compute embeddings for all existing episodes
- [ ] Validate data integrity post-migration
- [ ] Create rollback mechanism
- [ ] Document migration process
**Success Criteria**:
- [ ] All existing data migrated successfully
- [ ] Zero data loss during migration
- [ ] Embeddings computed for 100% of episodes
- [ ] Rollback tested and functional
- [ ] Migration completes in <5 minutes for 10k episodes
### Testing
```bash
# Unit tests
pytest tests/test_dual_layer_storage.py
pytest tests/test_migration.py
pytest tests/test_hooks_basic.py
# Integration tests
pytest tests/integration/test_sqlite_agentdb_sync.py
# Performance benchmarks
python scripts/benchmark_storage.py
```
### Week 1 Deliverables Checklist
- [ ] Dual-layer storage operational
- [ ] Migration from v1 to v2 successful
- [ ] Basic hooks capturing tool executions
- [ ] All tests passing
- [ ] Performance within targets (<5ms hook overhead)
- [ ] Documentation updated
---
## Phase 2: Intelligence & Learning (Week 2)
### Objectives
- Implement 5-layer pattern detection
- Add confidence-based learning system
- Create pattern frequency tracking
- Build temporal knowledge graph
### Deliverables
#### 2.1 Pattern Detection System
**Files**:
- `src/mcp_standards/hooks/pattern_extractor.py` (enhance existing)
- `src/mcp_standards/intelligence/pattern_learner.py` (new)
- `src/mcp_standards/intelligence/semantic_clustering.py` (new)
**Tasks**:
- [ ] Implement Layer 1: Explicit corrections detection
- [ ] Implement Layer 2: Implicit rejections detection
- [ ] Implement Layer 3: Rule violations detection
- [ ] Implement Layer 4: Behavioral patterns detection
- [ ] Implement Layer 5: Semantic clustering via AgentDB
- [ ] Create unified pattern learning pipeline
**Success Criteria**:
- [ ] Layer 1 detects 95%+ explicit corrections
- [ ] Layer 2 detects 85%+ implicit rejections (2-min window)
- [ ] Layer 3 detects 90%+ rule violations
- [ ] Layer 4 detects repeated sequences (5+ occurrences)
- [ ] Layer 5 clusters similar patterns via embeddings
- [ ] Unified confidence scoring working
#### 2.2 Confidence-Based Learning
**Files**:
- `src/mcp_standards/intelligence/confidence_scorer.py` (new)
- `src/mcp_standards/intelligence/preference_manager.py` (new)
**Tasks**:
- [ ] Create multi-factor confidence scoring
- [ ] Implement automatic preference promotion (3+ occurrences, 90%+ confidence)
- [ ] Add preference lifecycle management
- [ ] Build preference evolution tracking
- [ ] Create preference validation system
**Success Criteria**:
- [ ] Confidence scores accurate (validated against test cases)
- [ ] Auto-promotion triggers at 3 occurrences with 90%+ confidence
- [ ] Preference lifecycle tracked in temporal graph
- [ ] No false positives in auto-promotion
- [ ] Preferences can be manually overridden
#### 2.3 Temporal Knowledge Graph
**Files**:
- `src/mcp_standards/intelligence/temporal_graph.py` (enhance existing)
**Tasks**:
- [ ] Implement preference version tracking
- [ ] Add change reason logging
- [ ] Create preference evolution queries
- [ ] Build preference deprecation system
- [ ] Add knowledge graph visualization
**Success Criteria**:
- [ ] All preference changes tracked with timestamps
- [ ] Change reasons captured
- [ ] Can query preference history
- [ ] Deprecated preferences handled gracefully
- [ ] Evolution visible in MCP tools
#### 2.4 Enhanced MCP Tools
**Files**:
- `src/mcp_standards/server.py` (enhance)
**Tasks**:
- [ ] Add `learn_preference` tool
- [ ] Add `suggest_claudemd_update` tool
- [ ] Add `query_agent_performance` tool
- [ ] Add `validate_spec` tool
- [ ] Add `check_quality_gates` tool
**Success Criteria**:
- [ ] All new tools functional in Claude Desktop/Code
- [ ] Tools return structured data
- [ ] Error handling comprehensive
- [ ] Performance <100ms per tool call
- [ ] Documentation in docstrings
### Testing
```bash
# Unit tests
pytest tests/test_pattern_detection.py
pytest tests/test_confidence_scoring.py
pytest tests/test_temporal_graph.py
pytest tests/test_enhanced_mcp_tools.py
# Integration tests
pytest tests/integration/test_learning_pipeline.py
# Accuracy validation
python scripts/validate_pattern_detection.py
```
### Week 2 Deliverables Checklist
- [ ] 5-layer pattern detection operational
- [ ] Confidence-based learning working
- [ ] Temporal knowledge graph tracking changes
- [ ] Enhanced MCP tools available
- [ ] All tests passing with 80%+ coverage
- [ ] Pattern detection accuracy >90%
---
## Phase 3: Auto-Generation & Updates (Week 3)
### Objectives
- Implement skills auto-generation
- Create CLAUDE.md smart merging
- Build cross-tool config sync (optional)
- Add real-time notifications
### Deliverables
#### 3.1 Skills Auto-Generation
**Files**:
- `src/mcp_standards/skills/generator.py` (new)
- `src/mcp_standards/skills/templates/` (new)
- `src/mcp_standards/skills/validator.py` (new)
**Tasks**:
- [ ] Create skill generation pipeline
- [ ] Build template rendering system (Jinja2)
- [ ] Implement skill file writer
- [ ] Add skill validation (YAML frontmatter, markdown)
- [ ] Create INDEX.json management
- [ ] Setup skill evolution/strengthening
**Success Criteria**:
- [ ] Skills auto-generated from 90%+ confident patterns
- [ ] Generated skills follow standard template
- [ ] YAML frontmatter valid
- [ ] Skills discoverable by Claude Code
- [ ] INDEX.json kept in sync
- [ ] Skills strengthen with new evidence
#### 3.2 CLAUDE.md Smart Merging
**Files**:
- `src/mcp_standards/intelligence/claudemd_manager.py` (enhance existing)
- `src/mcp_standards/intelligence/claudemd_parser.py` (new)
- `src/mcp_standards/intelligence/conflict_resolver.py` (new)
**Tasks**:
- [ ] Implement hierarchy detection (global ā parent ā project)
- [ ] Create smart file selection logic
- [ ] Build content parser for existing CLAUDE.md
- [ ] Add intelligent conflict resolution
- [ ] Implement token optimization
- [ ] Create backup system
- [ ] Add atomic write operations
**Success Criteria**:
- [ ] Hierarchy correctly detected
- [ ] File selection logic accurate (validated with test cases)
- [ ] Conflicts resolved without data loss
- [ ] Token budget enforced (<10k tokens)
- [ ] Backups created before updates
- [ ] Updates atomic (all-or-nothing)
#### 3.3 Cross-Tool Config Sync (Optional)
**Files**:
- `src/mcp_standards/crosstools/cursor_sync.py` (new)
- `src/mcp_standards/crosstools/copilot_sync.py` (new)
- `src/mcp_standards/crosstools/format_converters.py` (new)
**Tasks**:
- [ ] Implement Cursor .cursorrules format converter
- [ ] Implement GitHub Copilot instructions converter
- [ ] Implement Windsurf .windsurfrules converter
- [ ] Add opt-in configuration
- [ ] Create sync scheduler
**Success Criteria**:
- [ ] Format converters accurate
- [ ] Opt-in system working
- [ ] Sync creates timestamped backups
- [ ] Changes reflected in other tools
- [ ] No conflicts with manual edits
#### 3.4 Real-Time Notifications
**Files**:
- `src/mcp_standards/notifications/notifier.py` (new)
**Tasks**:
- [ ] Implement MCP notification system
- [ ] Add notification levels (info, important, critical)
- [ ] Create notification templates
- [ ] Add user preferences for notification filtering
- [ ] Build notification history
**Success Criteria**:
- [ ] Notifications appear in Claude Desktop/Code
- [ ] Levels respected (user can filter)
- [ ] Templates clear and actionable
- [ ] History accessible
- [ ] No notification spam
### Testing
```bash
# Unit tests
pytest tests/test_skill_generation.py
pytest tests/test_claudemd_merging.py
pytest tests/test_crosstools_sync.py
pytest tests/test_notifications.py
# Integration tests
pytest tests/integration/test_auto_generation_pipeline.py
# Real-world validation
python scripts/test_with_real_claude.py
```
### Week 3 Deliverables Checklist
- [ ] Skills auto-generated from learned patterns
- [ ] CLAUDE.md updates working without conflicts
- [ ] Cross-tool sync functional (opt-in)
- [ ] Real-time notifications operational
- [ ] All tests passing
- [ ] Real-world validation with Claude Code successful
---
## Phase 4: Validation, Polish & Launch (Week 4)
### Objectives
- Implement spec validation engine
- Add agent performance tracking
- Create quality gates system
- Comprehensive testing and documentation
- Production readiness
### Deliverables
#### 4.1 Spec Validation Engine
**Files**:
- `src/mcp_standards/intelligence/validation_engine.py` (enhance existing)
- `src/mcp_standards/intelligence/spec_parser.py` (new)
- `src/mcp_standards/intelligence/gap_detector.py` (new)
**Tasks**:
- [ ] Implement spec capture and storage
- [ ] Create deliverable comparison logic
- [ ] Build gap detection algorithm
- [ ] Add validation gate checking
- [ ] Create validation reports
**Success Criteria**:
- [ ] Specs automatically captured from user messages
- [ ] Deliverables accurately compared to specs
- [ ] 90%+ gap detection accuracy
- [ ] Validation reports clear and actionable
- [ ] Quality gates prevent incomplete work
#### 4.2 Agent Performance Tracking
**Files**:
- `src/mcp_standards/intelligence/agent_tracker.py` (enhance existing)
- `src/mcp_standards/intelligence/performance_analyzer.py` (new)
**Tasks**:
- [ ] Implement agent execution tracking
- [ ] Add success/failure rate calculation
- [ ] Create correction frequency analysis
- [ ] Build agent recommendation engine
- [ ] Add performance dashboards (via MCP tools)
**Success Criteria**:
- [ ] All agent executions tracked
- [ ] Success rates accurate
- [ ] Recommendations based on historical data
- [ ] Performance trends visible
- [ ] Dashboards accessible via MCP tools
#### 4.3 Quality Gates System
**Files**:
- `src/mcp_standards/intelligence/quality_gates.py` (new)
**Tasks**:
- [ ] Implement configurable quality gates
- [ ] Add auto-check for common gates (tests, docs, build)
- [ ] Create custom gate support
- [ ] Build gate failure tracking
- [ ] Add gate recommendations
**Success Criteria**:
- [ ] Quality gates configurable per project
- [ ] Auto-checks work for common gates
- [ ] Custom gates supported
- [ ] Failures tracked and reported
- [ ] Recommendations improve over time
#### 4.4 Comprehensive Testing
**Files**:
- `tests/` (comprehensive coverage)
- `tests/integration/` (end-to-end tests)
- `tests/performance/` (benchmarks)
**Tasks**:
- [ ] Achieve 80%+ code coverage
- [ ] Create end-to-end integration tests
- [ ] Add performance benchmarks
- [ ] Build real-world scenario tests
- [ ] Create regression test suite
**Success Criteria**:
- [ ] Code coverage ā„80%
- [ ] All integration tests passing
- [ ] Performance benchmarks within targets
- [ ] Real-world scenarios validated
- [ ] No regressions detected
#### 4.5 Documentation & Guides
**Files**:
- `docs/guides/INSTALLATION.md`
- `docs/guides/QUICKSTART.md`
- `docs/guides/ADVANCED_USAGE.md`
- `docs/TROUBLESHOOTING.md`
- `docs/API_REFERENCE.md`
**Tasks**:
- [ ] Create installation guide
- [ ] Write quickstart tutorial
- [ ] Document advanced features
- [ ] Create troubleshooting guide
- [ ] Generate API reference
- [ ] Record video tutorial
**Success Criteria**:
- [ ] Installation guide tested by new user
- [ ] Quickstart completes in <15 minutes
- [ ] Advanced features well-documented
- [ ] Troubleshooting guide comprehensive
- [ ] API reference complete
- [ ] Video tutorial published
### Testing
```bash
# Full test suite
pytest tests/ -v --cov=src/mcp_standards --cov-report=html
# Integration tests
pytest tests/integration/ -v
# Performance benchmarks
python scripts/benchmark_full_system.py
# Real-world validation
python scripts/validate_production_ready.py
```
### Week 4 Deliverables Checklist
- [ ] Spec validation preventing incomplete work
- [ ] Agent performance driving recommendations
- [ ] Quality gates enforced
- [ ] 80%+ test coverage achieved
- [ ] All documentation complete
- [ ] Real-world validation successful
- [ ] Production-ready release
---
## Success Metrics
### Technical Metrics
| Metric | Target | Measurement |
|--------|--------|-------------|
| Hook Overhead | <5ms | `benchmark_hooks.py` |
| Pattern Detection Accuracy | >90% | `validate_patterns.py` |
| CLAUDE.md Token Budget | <10k | `token_counter.py` |
| Skill Generation Time | <1s | `benchmark_skills.py` |
| Test Coverage | ā„80% | `pytest --cov` |
| Migration Time (10k episodes) | <5min | `benchmark_migration.py` |
### User Experience Metrics
| Metric | Target | Measurement |
|--------|--------|-------------|
| Reduction in Repeated Instructions | 80% | User survey |
| Skills Discovery Success | 100% | Claude Code integration test |
| CLAUDE.md Conflicts | 0 | Integration tests |
| Notification Spam | 0 | User feedback |
| Setup Time | <15min | Quickstart guide completion |
### Learning System Metrics
| Metric | Target | Measurement |
|--------|--------|-------------|
| Pattern Promotion Accuracy | >95% | Manual review |
| Confidence Score Accuracy | >90% | Test cases validation |
| Spec Validation Accuracy | >90% | Real-world testing |
| Agent Recommendation Quality | >85% | User acceptance |
---
## Risk Mitigation
### High-Risk Areas
1. **Performance Impact**
- Risk: Hooks slow down Claude Code
- Mitigation: Async processing, 5s timeout, significance filtering
- Monitoring: Hook execution time logging
2. **False Learning**
- Risk: System learns incorrect patterns
- Mitigation: Confidence thresholds, manual override, transparent logging
- Monitoring: Pattern review dashboard
3. **Data Migration**
- Risk: Data loss during v1āv2 migration
- Mitigation: Backup-first, validation, rollback mechanism
- Monitoring: Migration success rate tracking
4. **CLAUDE.md Conflicts**
- Risk: Auto-updates conflict with manual edits
- Mitigation: Smart merging, conflict detection, user review
- Monitoring: Conflict occurrence tracking
5. **Token Budget Exceeded**
- Risk: CLAUDE.md grows beyond 10k tokens
- Mitigation: Optimization algorithm, /prime commands, warnings
- Monitoring: Token usage dashboard
---
## Dependencies
### External Dependencies
- Python ā„3.10
- `uv` package manager
- Claude Desktop/Code (native hooks support)
- AgentDB v1.0.7+
### Internal Dependencies
```
Phase 1 (Foundation) ā Phase 2 (Intelligence)
ā
Phase 3 (Auto-Generation)
ā
Phase 4 (Validation & Polish)
```
---
## Team & Resources
### Required Expertise
- Python backend development (storage, hooks, intelligence)
- LLM integration (MCP protocol, embeddings)
- Frontend integration (Claude Desktop/Code)
- Testing & QA (comprehensive test coverage)
- Documentation & DevRel (guides, tutorials)
### Time Commitment
- Week 1: 40 hours (foundation)
- Week 2: 40 hours (intelligence)
- Week 3: 40 hours (auto-generation)
- Week 4: 40 hours (validation & polish)
**Total**: 160 hours (4 weeks)
---
## Launch Checklist
### Pre-Launch
- [ ] All Phase 1-4 deliverables complete
- [ ] All tests passing
- [ ] Documentation reviewed
- [ ] Real-world validation successful
- [ ] Performance benchmarks within targets
- [ ] Security review passed
### Launch
- [ ] Tagged release (v2.0.0)
- [ ] PyPI package published
- [ ] Documentation deployed
- [ ] Video tutorial published
- [ ] Blog post published
- [ ] Community announcement
### Post-Launch
- [ ] Monitor error rates
- [ ] Track user feedback
- [ ] Respond to issues within 24h
- [ ] Iterate based on usage data
- [ ] Plan v2.1 improvements
---
## Communication Plan
### Week 1 Update
**Audience**: Internal team, early adopters
**Content**: Foundation complete, migration successful, hooks working
**Channels**: GitHub discussions, Discord
### Week 2 Update
**Audience**: Internal team, early adopters
**Content**: Pattern learning operational, accuracy metrics, MCP tools available
**Channels**: GitHub discussions, Discord, Twitter
### Week 3 Update
**Audience**: Public (soft launch)
**Content**: Auto-generation working, CLAUDE.md management, demo video
**Channels**: GitHub release notes, Twitter, LinkedIn
### Week 4 Launch
**Audience**: Public (full launch)
**Content**: Production-ready v2.0.0, comprehensive guides, testimonials
**Channels**: Product Hunt, Hacker News, Reddit, Twitter, LinkedIn, blog post
---
## Post-v2.0 Roadmap
### v2.1 (Month 2)
- Multi-user learning (team knowledge graphs)
- Advanced analytics dashboards
- ML-based pattern prediction
- Natural language preference input
### v2.2 (Month 3)
- Federated learning across teams
- Enterprise compliance features
- Advanced workflow automation
- Cross-organization knowledge sharing
### v3.0 (Month 6)
- AI-driven context optimization
- Predictive auto-suggestions
- Multi-modal learning (code + docs + conversations)
- Enterprise SaaS offering
---
## Conclusion
This roadmap provides a structured, phased approach to implementing the comprehensive memory architecture. Each phase builds on the previous, with clear deliverables, success criteria, and risk mitigation strategies.
**Key Principles**:
- Incremental delivery
- Continuous validation
- User-centric design
- Production quality from day 1
**Target**: Production-ready v2.0.0 in 4 weeks with 80%+ test coverage, <5ms performance impact, and comprehensive documentation.
---
**Created by**: Memory Architecture Agent
**Coordinated via**: Hive Mind Collective
**Timeline**: 4 weeks (phased)
**Status**: Ready for review and approval