Skip to main content
Glama

Carla MCP Server

by agrathwohl
ARCHITECTURE.md•13.2 kB
# Carla MCP Server Architecture Comprehensive architectural documentation for the Carla MCP Server project. ## Project Overview The Carla MCP Server is a production-ready Model Context Protocol (MCP) server that provides comprehensive control over the Carla audio plugin host. Built with Python 3.12+, it offers 45+ tools across 7 functional categories for professional audio production workflows. **Key Metrics:** - **Codebase Size**: ~6,500 lines of Python code - **Tool Count**: 45+ implemented methods across 7 categories - **Test Coverage**: 660+ lines of comprehensive test suite - **Architecture**: Modular design with clear separation of concerns ## Directory Structure ``` carla-mcp-server/ ā”œā”€ā”€ šŸ“ config/ # Configuration files │ └── config.yaml # Server configuration ā”œā”€ā”€ šŸ“ docs/ # Documentation ā”œā”€ā”€ šŸ“ monitors/ # Real-time monitoring (310 lines) │ ā”œā”€ā”€ audio_monitor.py # Audio level monitoring (108 lines) │ ā”œā”€ā”€ cpu_monitor.py # Performance monitoring (128 lines) │ └── event_monitor.py # Event streaming (74 lines) ā”œā”€ā”€ šŸ“ tests/ # Test suite (660+ lines) │ ā”œā”€ā”€ test_complete_suite.py # Comprehensive integration tests (468 lines) │ └── test_server.py # Unit tests (192 lines) ā”œā”€ā”€ šŸ“ tools/ # MCP tool implementations (2,900+ lines) │ ā”œā”€ā”€ analysis_tools.py # Real-time analysis (534 lines) │ ā”œā”€ā”€ hardware_tools.py # Hardware interface (235 lines) │ ā”œā”€ā”€ jack_tools.py # JACK integration (394 lines) │ ā”œā”€ā”€ parameter_tools.py # Parameter automation (740 lines) │ ā”œā”€ā”€ plugin_tools.py # Plugin control (689 lines) │ ā”œā”€ā”€ routing_tools.py # Audio routing (558 lines) │ └── session_tools.py # Session management (567 lines) ā”œā”€ā”€ šŸ“„ base_tools.py # Base tool framework (355 lines) ā”œā”€ā”€ šŸ“„ carla_controller.py # Carla backend wrapper (800 lines) ā”œā”€ā”€ šŸ“„ main.py # Entry point (6 lines) ā”œā”€ā”€ šŸ“„ server.py # Main MCP server (701 lines) ā”œā”€ā”€ šŸ“„ tool_registry.py # Tool registration system (569 lines) ā”œā”€ā”€ šŸ“„ types.py # Type definitions (263 lines) ā”œā”€ā”€ šŸ“„ pyproject.toml # Python project configuration ā”œā”€ā”€ šŸ“„ requirements.txt # Dependencies ā”œā”€ā”€ šŸ“„ .mcp.json # MCP client configuration └── šŸ“„ README.md # Main documentation ``` ## Core Architecture Components ### 1. MCP Server Core (`server.py` - 701 lines) The main MCP server implementation that orchestrates all functionality. **Key Classes:** - `CarlaMCPServer`: Main server class with tool routing and lifecycle management - Tool registration and execution framework - WebSocket/stdio communication handling - Error handling and logging **Responsibilities:** - MCP protocol implementation - Tool discovery and registration - Request routing and response handling - Session lifecycle management - Performance monitoring integration ### 2. Carla Controller (`carla_controller.py` - 800 lines) High-level wrapper for Carla backend operations, providing a clean Python API. **Key Classes:** - `CarlaController`: Main interface to Carla engine - Plugin type enumerations (`PluginType`, `BinaryType`) - Engine state management - Audio/MIDI port handling **Responsibilities:** - Carla engine lifecycle (start/stop) - Plugin loading and management - Audio routing and connections - Parameter control and automation - Project file operations ### 3. Tool Registry System (`tool_registry.py` - 569 lines) Clean registration system for MCP tools with automatic schema generation. **Key Classes:** - `ToolDefinition`: Structured tool metadata - `MCPToolRegistry`: Registry with schema generation - `create_carla_tool_registry()`: Factory function **Features:** - Automatic MCP tool schema generation - Tool categorization and versioning - Handler mapping and resolution - Deprecation support ### 4. Type System (`types.py` - 263 lines) Comprehensive type definitions for type safety and documentation. **Key Components:** - Type aliases: `PluginId`, `ParameterId`, `JsonDict`, etc. - Enums: `PluginType`, `BinaryType`, `ProcessMode` - Data classes: `PluginInfo`, `SessionInfo`, `PerformanceMetrics` - Protocols: `ToolHandler`, `CarlaController` - Custom exceptions: `PluginError`, `SessionError`, etc. ### 5. Base Tool Framework (`base_tools.py` - 355 lines) Foundation framework for all tool implementations. **Key Features:** - Abstract base classes for tool handlers - Common error handling patterns - Validation utilities - Response formatting standards ## Tool Implementation Architecture ### Tool Categories and Implementation Each tool category is implemented as a separate module with consistent patterns: #### 1. Session Management (`session_tools.py` - 567 lines) - **Methods**: 8 (load_session, save_session, create_snapshot, switch_session, etc.) - **Focus**: Project lifecycle and state management - **Dependencies**: File I/O, Carla project format #### 2. Plugin Control (`plugin_tools.py` - 689 lines) - **Methods**: 8 (load_plugin, scan_plugins, control_plugin, batch_process, etc.) - **Focus**: Plugin loading, control, and processing - **Dependencies**: Carla plugin API, file system scanning #### 3. Audio Routing (`routing_tools.py` - 558 lines) - **Methods**: 8 (connect_audio, create_bus, setup_sidechain, etc.) - **Focus**: Audio connections and routing matrix - **Dependencies**: Carla patchbay, JACK integration #### 4. Parameter Automation (`parameter_tools.py` - 740 lines) - **Methods**: 8 (automate_parameter, map_midi_cc, create_macro, etc.) - **Focus**: Parameter control and automation - **Dependencies**: MIDI handling, automation curves #### 5. Real-Time Analysis (`analysis_tools.py` - 534 lines) - **Methods**: 5 (analyze_spectrum, measure_levels, detect_feedback, etc.) - **Focus**: Audio analysis and measurement - **Dependencies**: NumPy, SciPy for signal processing #### 6. JACK Integration (`jack_tools.py` - 394 lines) - **Methods**: 6 (list_jack_ports, connect_jack_ports, etc.) - **Focus**: JACK audio system integration - **Dependencies**: JACK client library #### 7. Hardware Control (`hardware_tools.py` - 235 lines) - **Methods**: 3+ (configure_audio_interface, list_audio_devices, etc.) - **Focus**: Audio hardware configuration - **Dependencies**: System audio drivers ### Tool Implementation Pattern All tool classes follow a consistent pattern: ```python class ToolClass: def __init__(self, carla_controller): self.carla = carla_controller async def execute(self, tool_name: str, arguments: dict) -> dict: """Main execution entry point""" # Route to specific method based on tool_name async def specific_tool_method(self, param1: str, param2: int, **kwargs) -> dict: """Individual tool implementation""" try: # 1. Validate parameters # 2. Execute operation via carla_controller # 3. Format response return {"success": True, "data": result} except Exception as e: return {"success": False, "error": str(e)} ``` ## Monitoring Architecture ### Real-Time Monitoring System The monitoring system provides real-time insights into system performance and audio metrics: #### 1. Audio Monitor (`audio_monitor.py` - 108 lines) - Level metering (Peak, RMS, LUFS) - Spectrum analysis - Audio dropout detection - Signal quality metrics #### 2. CPU Monitor (`cpu_monitor.py` - 128 lines) - System CPU usage tracking - Plugin-specific CPU monitoring - Memory usage statistics - Performance bottleneck detection #### 3. Event Monitor (`event_monitor.py` - 74 lines) - Real-time event streaming - MIDI event capture - Parameter change tracking - Session state notifications ## Configuration Architecture ### Configuration Hierarchy 1. **Environment Variables** - `CARLA_PATH`: Carla installation path - `PYTHONPATH`: Python module resolution - `LD_LIBRARY_PATH`: Shared library resolution 2. **MCP Configuration** (`.mcp.json`) - MCP client connection settings - Server execution parameters - Environment variable definitions 3. **Application Configuration** (`config/config.yaml`) - Server host/port settings - Carla-specific configuration - Audio driver preferences - Plugin scan paths 4. **Project Configuration** (`pyproject.toml`) - Python dependencies - Development tool configuration - Build settings ## Testing Architecture ### Test Strategy The testing architecture ensures reliability across all components: #### 1. Unit Tests (`test_server.py` - 192 lines) - Individual tool method testing - Mock Carla controller for isolated testing - Parameter validation testing - Error condition coverage #### 2. Integration Tests (`test_complete_suite.py` - 468 lines) - End-to-end workflow testing - Real Carla engine integration - Multi-tool interaction scenarios - Performance regression testing #### 3. Test Organization - Async test support with pytest-asyncio - Comprehensive fixture setup - Mock strategies for external dependencies - Continuous integration ready ## Error Handling Architecture ### Error Management Strategy Consistent error handling across all components: 1. **Exception Hierarchy** - Base exceptions in `types.py` - Component-specific exceptions - Error context preservation 2. **Error Response Format** ```json { "success": false, "error": "ErrorType", "message": "Human-readable description", "details": {"additional": "context"} } ``` 3. **Logging Strategy** - Structured logging with context - Performance metrics logging - Error correlation tracking ## Dependency Architecture ### Core Dependencies #### Production Dependencies - **mcp**: Model Context Protocol implementation - **PyQt5**: Carla GUI integration - **numpy**: Numerical computations for audio analysis - **scipy**: Signal processing algorithms - **psutil**: System performance monitoring - **asyncio-mqtt**: MQTT event streaming - **aiofiles**: Async file operations - **pyyaml**: Configuration file parsing #### Development Dependencies - **pytest**: Testing framework with async support - **black**: Code formatting - **isort**: Import sorting - **flake8**: Linting - **mypy**: Type checking - **pre-commit**: Git hooks ### External System Dependencies 1. **Carla Audio Plugin Host** - Python bindings required - Plugin format support (VST2/3, LV2, etc.) - JACK audio system integration 2. **JACK Audio Connection Kit** - Low-latency audio routing - Real-time audio processing - Cross-application audio connections 3. **Audio Plugins** - VST2/VST3 support - LV2 plugin format - LADSPA/DSSI compatibility - AU support (macOS) ## Performance Architecture ### Performance Characteristics 1. **Tool Execution Performance** - Async operation design - Non-blocking audio operations - Efficient parameter caching 2. **Real-Time Constraints** - Audio thread safety - Low-latency monitoring - Minimal audio dropouts 3. **Memory Management** - Plugin state caching - Session snapshot efficiency - Resource cleanup patterns 4. **Scalability Considerations** - Multiple session support - Plugin instance limits - Connection matrix efficiency ## Security Architecture ### Security Considerations 1. **File System Access** - Path validation and sanitization - Plugin loading security - Project file integrity 2. **Network Security** - MCP protocol security - Client authentication support - Rate limiting mechanisms 3. **Process Isolation** - Plugin sandboxing via Carla - Resource limit enforcement - Crash recovery mechanisms ## Development Workflow ### Development Process 1. **Code Quality Gates** - Type checking with mypy - Code formatting with black - Import sorting with isort - Linting with flake8 2. **Testing Requirements** - Unit test coverage - Integration test validation - Performance regression testing 3. **Documentation Standards** - Comprehensive API documentation - Architecture documentation - Usage examples and tutorials ## Future Architecture Considerations ### Extensibility Design 1. **Plugin Architecture** - Tool plugin system - Custom analysis modules - Third-party integrations 2. **Protocol Extensions** - Additional MCP capabilities - Streaming protocol support - Real-time collaboration features 3. **Performance Optimization** - GPU acceleration for analysis - Distributed processing support - Advanced caching strategies --- This architecture supports professional audio production workflows while maintaining code quality, performance, and extensibility for future enhancements.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/agrathwohl/carla-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server