Skip to main content
Glama

Targetprocess MCP Server

# AI-First Architecture: Semantic MCP for Targetprocess ## Technical Architecture Overview This document details the technical architecture for implementing an AI-first approach to Targetprocess integration using semantic MCP servers with role-based personalities. ## Core Architectural Principles ### 1. Semantic Abstraction Layer Traditional API approach: ```javascript // Developer needs to understand Targetprocess data model const tasks = await api.search({ type: "Task", where: "AssignedUser.Id = 123 and EntityState.Name != 'Done'", include: ["Project", "Priority", "Iteration"] }); ``` Semantic MCP approach: ```javascript // AI understands intent const tasks = await mcp.execute("show-my-tasks"); ``` ### 2. Role-Based Personality System ```yaml personalities: developer: description: "Software developer focused on task execution" capabilities: - show-my-tasks - start-working-on - update-progress - complete-task - log-time context: - current_sprint - assigned_tasks - team_members constraints: - can_only_modify_assigned_items - cannot_delete_entities - cannot_modify_sprint_scope product-owner: description: "Product owner managing backlog and priorities" capabilities: - manage-backlog - prioritize-features - plan-sprint - create-user-stories - define-acceptance-criteria context: - product_roadmap - customer_feedback - team_velocity constraints: - can_modify_any_backlog_item - cannot_modify_time_tracking - cannot_assign_tasks ``` ### 3. Multi-Instance Orchestration For complex agent scenarios requiring multiple perspectives: ```typescript class ReleaseManagerAgent { private instances: { productOwner: MCPInstance; scrumMaster: MCPInstance; techLead: MCPInstance; }; async planRelease(requirements: string[]) { // Get prioritized features from Product Owner perspective const features = await this.instances.productOwner .execute("prioritize-features", { requirements }); // Assess team capacity from Scrum Master perspective const capacity = await this.instances.scrumMaster .execute("calculate-team-capacity", { duration: "3 months", teams: features.teams }); // Validate technical feasibility from Tech Lead perspective const feasibility = await this.instances.techLead .execute("assess-technical-debt", { features }); return this.orchestrateReleasePlan(features, capacity, feasibility); } } ``` ## Integration Architecture ### 1. MCP Service Deployment Model ``` ┌─────────────────────────────────────────────────────────────┐ │ AI Platform (watsonx) │ ├─────────────────────────────────────────────────────────────┤ │ Agent 1 Agent 2 Agent 3 │ │ ┌─────────┐ ┌─────────┐ ┌─────────┐ │ │ │Developer │ │ P.O. │ │ SM │ │ │ │ MCP │ │ MCP │ │ MCP │ │ │ └────┬────┘ └────┬────┘ └────┬────┘ │ │ │ │ │ │ └───────┼───────────────┼─────────────────┼──────────────────┘ │ │ │ └───────────────┴─────────────────┘ │ MCP Protocol │ ┌───────────────────────┴─────────────────────────────────────┐ │ MCP Service Layer │ ├─────────────────────────────────────────────────────────────┤ │ ┌─────────────┐ ┌──────────────┐ ┌─────────────────┐ │ │ │ Semantic │ │ Context │ │ Workflow │ │ │ │ Mapper │ │ Manager │ │ Orchestrator │ │ │ └─────────────┘ └──────────────┘ └─────────────────┘ │ │ ┌─────────────┐ ┌──────────────┐ ┌─────────────────┐ │ │ │ Role │ │ Feature │ │ Hint │ │ │ │ Filter │ │ Registry │ │ Generator │ │ │ └─────────────┘ └──────────────┘ └─────────────────┘ │ └──────────────────────────┬──────────────────────────────────┘ │ │ ┌──────────────────────────┴──────────────────────────────────┐ │ Targetprocess API / Graph DB │ └──────────────────────────────────────────────────────────────┘ ``` ### 2. Semantic Operation Flow ```typescript interface SemanticOperation { // User intent intent: "show-my-tasks"; // Role context personality: "developer"; // Execution context context: { user: { id: 123, team: "Alpha" }; workspace: { project: "Banking", sprint: "Sprint 42" }; conversation: { previousOps: ["login", "check-notifications"] }; }; // Semantic mapping mapsTo: { operation: "searchEntities"; params: { type: "Task", where: "AssignedUser.Id = ${context.user.id} and Sprint = ${context.workspace.sprint}", include: ["Priority", "BlockedBy"] }; }; // Workflow hints provides: { nextSteps: [ "Select a task to work on", "Check for blocked items" ]; suggestions: [ "start-working-on ${mostUrgentTask.id}", "show-blocked-tasks" ]; }; } ``` ## Implementation Patterns ### 1. Context-Aware Execution ```typescript class ContextAwareExecutor { async execute(operation: string, params: any, context: ExecutionContext) { // Enrich parameters with context const enrichedParams = await this.enrichWithContext(params, context); // Apply role-based filters const filteredParams = await this.applyRoleFilters( enrichedParams, context.personality ); // Execute operation const result = await this.performOperation(operation, filteredParams); // Generate contextual hints const hints = await this.generateHints(result, context); return { data: result, nextSteps: hints.workflow, suggestions: hints.operations, context: this.updateContext(context, result) }; } } ``` ### 2. Workflow Orchestration ```typescript class WorkflowOrchestrator { async executeWorkflow( workflowId: string, params: any, context: ExecutionContext ) { const workflow = this.workflows.get(workflowId); const results = []; for (const step of workflow.steps) { // Check if step should execute if (await this.shouldExecute(step, results, context)) { // Execute step with accumulated context const stepResult = await this.executeStep(step, { params, previousResults: results, context }); results.push(stepResult); // Update context for next step context = this.mergeContext(context, stepResult.context); // Check for early termination if (stepResult.terminate) break; } } return this.composeWorkflowResult(results, workflow); } } ``` ### 3. Semantic Hint Generation ```typescript class SemanticHintGenerator { generateHints( operation: string, result: any, context: ExecutionContext ): WorkflowHints { const hints = { workflow: [], operations: [] }; // Analyze result state const state = this.analyzeState(result); // Generate workflow guidance if (state.hasBlockedItems) { hints.workflow.push("Address blocked items before starting new work"); hints.operations.push(`resolve-blockers`); } if (state.hasHighPriorityItems && !state.isWorkingOnHighPriority) { hints.workflow.push("Consider focusing on high-priority items first"); hints.operations.push(`start-working-on ${state.highestPriority.id}`); } // Role-specific hints if (context.personality === 'developer' && state.hasUnestimatedTasks) { hints.workflow.push("Some tasks need estimation"); hints.operations.push(`estimate-tasks`); } return hints; } } ``` ## Advanced Features ### 1. Graph Database Integration Future enhancement for semantic relationships: ```cypher // Neo4j query for semantic task relationships MATCH (u:User {id: $userId})-[:ASSIGNED_TO]->(t:Task) WHERE t.status <> 'Done' MATCH (t)-[:BELONGS_TO]->(s:Sprint)-[:CURRENT]->(p:Project) OPTIONAL MATCH (t)-[:BLOCKED_BY]->(blocker) OPTIONAL MATCH (t)-[:DEPENDS_ON]->(dependency) RETURN t, s, p, blocker, dependency ORDER BY t.priority DESC, t.createdDate ASC ``` ### 2. Learning and Adaptation ```typescript class AdaptiveMCPService { async learn(interaction: Interaction) { // Track operation sequences await this.patternTracker.record(interaction); // Identify common workflows const patterns = await this.patternAnalyzer.analyze( interaction.personality, interaction.sequence ); // Suggest workflow optimizations if (patterns.frequency > threshold) { await this.workflowOptimizer.suggest({ pattern: patterns, optimization: this.createCompositeOperation(patterns) }); } // Adapt hint generation await this.hintAdapter.update(interaction.feedback); } } ``` ### 3. Multi-Platform Support ```typescript interface PlatformAdapter { // watsonx adapter watsonx: { formatRequest: (req: WatsonxRequest) => MCPRequest; formatResponse: (res: MCPResponse) => WatsonxResponse; handleStreaming: (stream: MCPStream) => WatsonxStream; }; // Claude adapter claude: { formatRequest: (req: ClaudeRequest) => MCPRequest; formatResponse: (res: MCPResponse) => ClaudeResponse; }; // Generic OpenAI-compatible openai: { formatRequest: (req: OpenAIRequest) => MCPRequest; formatResponse: (res: MCPResponse) => OpenAIResponse; }; } ``` ## Deployment Architecture ### 1. Container-Based Deployment ```yaml version: '3.8' services: mcp-gateway: image: targetprocess/mcp-gateway:latest environment: - AUTH_MODE=oauth2 - RATE_LIMIT=1000/min ports: - "8443:8443" mcp-developer: image: targetprocess/mcp-service:latest environment: - PERSONALITY=developer - MAX_INSTANCES=100 deploy: replicas: 3 mcp-product-owner: image: targetprocess/mcp-service:latest environment: - PERSONALITY=product-owner - MAX_INSTANCES=50 deploy: replicas: 2 context-store: image: redis:alpine volumes: - context-data:/data metrics-collector: image: targetprocess/mcp-metrics:latest environment: - BILLING_ENDPOINT=${BILLING_API} ``` ### 2. Scaling Strategy - **Horizontal Scaling**: Personality-specific instance pools - **Caching Layer**: Redis for context and frequent queries - **Load Balancing**: Route by personality and operation type - **Circuit Breakers**: Prevent cascade failures - **Rate Limiting**: Per-customer and per-operation limits ## Security Considerations ### 1. Authentication Flow ``` AI Platform → OAuth2 → MCP Gateway → Validate Permissions → Route to Instance ↓ Check Rate Limits ↓ Log for Billing ``` ### 2. Role-Based Access Control - Personality-level permissions - Operation-level restrictions - Data-level filtering - Audit trail for compliance ## Monitoring and Observability ### 1. Key Metrics - **Operation Latency**: p50, p95, p99 by operation type - **Success Rate**: By personality and operation - **Usage Patterns**: Heat maps of operation sequences - **Context Efficiency**: Cache hit rates - **Business Metrics**: Operations per customer, revenue per operation ### 2. Debugging Tools - Request tracing across instances - Semantic mapping visualization - Context state inspection - Hint effectiveness tracking ## Conclusion This architecture enables Targetprocess to become truly AI-first by: 1. **Abstracting Complexity**: AI agents work with business concepts, not technical APIs 2. **Enabling Orchestration**: Multiple perspectives can be combined naturally 3. **Supporting Evolution**: Decoupled architecture allows independent innovation 4. **Driving Monetization**: Clear value delivery through metered operations 5. **Leading the Market**: First comprehensive AI-native project management platform The semantic MCP approach transforms Targetprocess from a tool that AI can use into a platform designed for AI intelligence.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aaronsb/apptio-target-process-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server