Skip to main content
Glama

Llama 4 Maverick MCP Server

by YobieBen

🦙 Llama 4 Maverick MCP Server (Python)

Author: Yobie Benjamin
Version: 0.9
Date: August 1, 2025

A Python implementation of the Model Context Protocol (MCP) server that bridges Llama models with Claude Desktop through Ollama. This pure Python solution offers clean architecture, high performance, and easy extensibility.

📚 Table of Contents

🎯 What Would You Use This Llama MCP Server For?

The Revolution of Local AI + Claude Desktop

This Python MCP server creates a powerful bridge between Claude Desktop's sophisticated interface and your locally-hosted Llama models. Here's what makes this combination revolutionary:

1. Privacy-First AI Operations 🔒

The Challenge: Organizations handling sensitive data can't use cloud AI due to privacy concerns.

The Solution: This MCP server keeps everything local while providing enterprise-grade AI capabilities.

Real-World Applications:

  • Healthcare: A hospital can analyze patient records using AI without violating HIPAA compliance
  • Legal: Law firms can process confidential client documents with complete privacy
  • Finance: Banks can analyze transaction data without exposing customer information
  • Government: Agencies can process classified documents on air-gapped systems

Example Implementation:

# Process sensitive medical records locally async def analyze_patient_data(patient_file): # Data never leaves your server content = await tool_manager.execute("read_file", {"path": patient_file}) # Use specialized medical model analysis = await llama_service.complete( prompt=f"Analyze patient data for risk factors: {content}", model="medical-llama:latest", # Your HIPAA-compliant fine-tuned model temperature=0.1 # Low temperature for medical accuracy ) # Store results locally with encryption await secure_storage.save(analysis, encrypted=True)

2. Custom Model Deployment 🎯

The Challenge: Generic models don't understand your domain-specific language and requirements.

The Solution: Deploy your own fine-tuned models through the MCP interface.

Real-World Applications:

  • Research Labs: Use models trained on proprietary research data
  • Enterprises: Deploy models fine-tuned on company documentation
  • Educational Institutions: Use models trained on curriculum-specific content
  • Industry-Specific: Legal, medical, financial, or technical domain models

Example Implementation:

# Switch between specialized models based on task class ModelSelector: def __init__(self): self.models = { "general": "llama3:latest", "code": "codellama:latest", "medical": "medical-llama:13b", "legal": "legal-llama:7b", "finance": "finance-llama:13b" } async def select_and_query(self, domain: str, prompt: str): model = self.models.get(domain, "llama3:latest") return await llama_service.complete( prompt=prompt, model=model, temperature=0.3 if domain in ["medical", "legal"] else 0.7 )

3. Hybrid Intelligence Systems 🔄

The Challenge: No single AI model excels at everything.

The Solution: Combine Claude's reasoning with Llama's generation capabilities.

Real-World Applications:

  • Software Development: Claude plans architecture, Llama generates implementation
  • Content Creation: Claude creates outlines, Llama writes detailed content
  • Data Analysis: Claude interprets results, Llama generates reports
  • Research: Claude formulates hypotheses, Llama explores implications

Example Implementation:

# Hybrid workflow combining Claude and Llama class HybridAI: async def complex_task(self, requirement: str): # Step 1: Use Claude for high-level planning plan = await claude.create_plan(requirement) # Step 2: Use local Llama for detailed implementation implementation = await llama_service.complete( prompt=f"Implement this plan: {plan}", model="codellama:34b", max_tokens=4096 ) # Step 3: Use Claude for review and refinement refined = await claude.review_and_refine(implementation) return refined

4. Offline and Edge Computing 🌐

The Challenge: Many environments lack reliable internet or prohibit cloud connections.

The Solution: Full AI capabilities without any internet requirement.

Real-World Applications:

  • Remote Operations: Oil rigs, ships, remote research stations
  • Industrial IoT: Factory floors with real-time requirements
  • Field Work: Geological surveys, wildlife research, disaster response
  • Secure Facilities: Military bases, research labs, government buildings

Example Implementation:

# Edge deployment for industrial quality control class EdgeQualityControl: def __init__(self): self.config = Config( llama_model_name="quality-control:latest", enable_streaming=True, max_context_length=8192 # Optimized for edge devices ) async def inspect_product(self, sensor_data: dict): # Process sensor data locally analysis = await llama_service.complete( prompt=f"Analyze sensor readings for defects: {sensor_data}", temperature=0.1, # Consistent results needed max_tokens=256 # Quick response for real-time processing ) # Trigger local actions based on analysis if "defect" in analysis.lower(): await self.trigger_alert(analysis) return analysis

5. Experimentation and Research 🧪

The Challenge: Researchers need reproducible results and full control over model behavior.

The Solution: Complete transparency and control over every aspect of the AI pipeline.

Real-World Applications:

  • Academic Research: Reproducible experiments for papers
  • Model Comparison: A/B testing different models and parameters
  • Behavior Analysis: Understanding how models respond to different inputs
  • Prompt Engineering: Developing optimal prompts for specific tasks

Example Implementation:

# Research experiment framework class ExperimentRunner: async def run_experiment(self, hypothesis: str, test_cases: list): results = [] # Test multiple models for model in ["llama3:7b", "llama3:13b", "llama3:70b"]: # Test multiple parameters for temp in [0.1, 0.5, 0.9, 1.5]: model_results = [] for test in test_cases: response = await llama_service.complete( prompt=test, model=model, temperature=temp, seed=42 # Reproducible results ) model_results.append({ "input": test, "output": response, "model": model, "temperature": temp, "timestamp": datetime.now() }) results.append(model_results) # Analyze and save results analysis = self.analyze_results(results) await self.save_experiment(hypothesis, results, analysis) return analysis

6. Cost-Effective Scaling 💰

The Challenge: API costs can become prohibitive for high-volume applications.

The Solution: One-time hardware investment for unlimited usage.

Real-World Applications:

  • Startups: Prototype without burning through funding
  • Education: Provide AI access to all students without budget concerns
  • Non-profits: Leverage AI without ongoing costs
  • High-volume Processing: Batch jobs, data analysis, content generation

Cost Analysis Example:

# Cost comparison calculator class CostAnalyzer: def calculate_savings(self, monthly_tokens: int): # API costs (approximate) api_cost_per_million = 15.00 # USD monthly_api_cost = (monthly_tokens / 1_000_000) * api_cost_per_million # Local costs (one-time hardware) hardware_cost = 2000 # Good GPU setup electricity_monthly = 50 # Approximate # Calculate break-even months_to_break_even = hardware_cost / (monthly_api_cost - electricity_monthly) return { "monthly_api_cost": monthly_api_cost, "monthly_local_cost": electricity_monthly, "monthly_savings": monthly_api_cost - electricity_monthly, "break_even_months": months_to_break_even, "first_year_savings": (monthly_api_cost * 12) - (hardware_cost + electricity_monthly * 12) }

7. Real-Time Processing

The Challenge: Network latency makes cloud AI unsuitable for real-time applications.

The Solution: Sub-second response times with local processing.

Real-World Applications:

  • Trading Systems: Analyze market data in milliseconds
  • Gaming: Real-time NPC dialogue and behavior
  • Robotics: Immediate response to sensor inputs
  • Live Translation: Instant language translation

Example Implementation:

# Real-time stream processing class StreamProcessor: def __init__(self): self.buffer = [] self.processing = False async def process_stream(self, data_stream): async for chunk in data_stream: self.buffer.append(chunk) if not self.processing and len(self.buffer) > 0: self.processing = True # Process immediately without network delay result = await llama_service.complete( prompt=f"Analyze: {self.buffer[-1]}", model="tinyllama:latest", # Fast model for real-time max_tokens=50, stream=True ) async for token in result: yield token # Stream results immediately self.processing = False

8. Custom Tool Integration 🛠️

The Challenge: Generic AI can't interact with your specific systems and databases.

The Solution: Build custom tools that integrate with your infrastructure.

Real-World Applications:

  • DevOps: AI that can manage your specific infrastructure
  • Database Management: Query and manage your databases via natural language
  • System Administration: Automate complex administrative tasks
  • Business Intelligence: Connect to your BI tools and data warehouses

Example Implementation:

# Custom tool for database operations class DatabaseTool(BaseTool): @property def name(self) -> str: return "company_database" @property def description(self) -> str: return "Query and manage company database" async def execute(self, query: str, operation: str = "select") -> ToolResult: # Connect to your specific database async with get_company_db() as db: if operation == "select": results = await db.fetch(query) return ToolResult(success=True, data=results) elif operation == "analyze": # Use Llama to analyze query results analysis = await llama_service.complete( prompt=f"Analyze this data: {results}", temperature=0.3 ) return ToolResult(success=True, data=analysis)

9. Compliance and Governance 📋

The Challenge: Regulatory requirements demand complete control and audit trails.

The Solution: Full transparency and logging of all AI operations.

Real-World Applications:

  • Healthcare: HIPAA compliance with audit trails
  • Finance: SOX compliance with transaction monitoring
  • Legal: Attorney-client privilege protection
  • Government: Security clearance requirements

Example Implementation:

# Compliance-aware AI system class ComplianceAI: def __init__(self): self.audit_logger = AuditLogger() self.encryption = EncryptionService() async def process_regulated_data(self, data: str, user: str, purpose: str): # Log access for audit audit_id = await self.audit_logger.log_access( user=user, data_type="regulated", purpose=purpose, timestamp=datetime.now() ) # Encrypt data in transit encrypted = self.encryption.encrypt(data) # Process with local model (data never leaves premises) result = await llama_service.complete( prompt=f"Process: {encrypted}", model="compliance-llama:latest" ) # Log completion await self.audit_logger.log_completion( audit_id=audit_id, success=True, result_hash=hashlib.sha256(result.encode()).hexdigest() ) return self.encryption.encrypt(result)

10. Educational Environments 🎓

The Challenge: Educational institutions need affordable AI access for all students.

The Solution: Single deployment serves unlimited students without per-use costs.

Real-World Applications:

  • Computer Science: Teaching AI/ML concepts hands-on
  • Research Projects: Student research without budget constraints
  • Writing Centers: AI-assisted writing for all students
  • Language Learning: Personalized language practice

Example Implementation:

# Educational AI assistant class EducationalAssistant: def __init__(self): self.student_profiles = {} self.learning_analytics = LearningAnalytics() async def personalized_tutoring(self, student_id: str, subject: str, question: str): # Get student's learning profile profile = self.student_profiles.get(student_id, self.create_profile(student_id)) # Adjust response based on student level response = await llama_service.complete( prompt=f""" Student Level: {profile['level']} Subject: {subject} Question: {question} Provide an explanation appropriate for this student's level. """, temperature=0.7, model="education-llama:latest" ) # Track learning progress await self.learning_analytics.record_interaction( student_id=student_id, subject=subject, question=question, response=response ) return response

🐍 Why Python?

Advantages Over TypeScript/Node.js

AspectPython AdvantageUse Case
Scientific ComputingNumPy, SciPy, Pandas integrationData analysis, research
ML EcosystemDirect integration with PyTorch, TensorFlowModel experimentation
SimplicityCleaner async/await syntaxFaster development
LibrariesVast ecosystem of AI/ML toolsExtended functionality
DebuggingBetter error messages and debugging toolsEasier troubleshooting
Performanceuvloop for high-performance asyncBetter concurrency
Type SafetyType hints + Pydantic validationRuntime validation

✨ Features

Core Capabilities

  • 🚀 High Performance: Async/await with uvloop support
  • 🛠️ 10+ Built-in Tools: Web search, file ops, calculations, and more
  • 📝 Prompt Templates: Pre-defined prompts for common tasks
  • 📁 Resource Management: Access templates and documentation
  • 🔄 Streaming Support: Real-time token generation
  • 🔧 Highly Configurable: Environment-based configuration
  • 📊 Structured Logging: Comprehensive debugging support
  • 🧪 Fully Tested: Pytest test suite included

Python-Specific Features

  • 🐼 Data Science Integration: Works with Pandas, NumPy
  • 🤖 ML Framework Compatible: Integrate with PyTorch, TensorFlow
  • 📈 Analytics Built-in: Performance metrics and monitoring
  • 🔌 Plugin System: Easy to extend with Python packages
  • 🎯 Type Safety: Pydantic models for validation
  • 🔒 Security: Built-in sanitization and validation

💻 System Requirements

Minimum Requirements

ComponentMinimumRecommendedOptimal
Python3.9+3.11+Latest
CPU4 cores8 cores16+ cores
RAM8GB16GB32GB+
Storage10GB SSD50GB SSD100GB NVMe
OSLinux/macOS/WindowsUbuntu 22.04Latest Linux

Model Requirements

ModelParametersRAMUse Case
tinyllama1.1B2GBTesting, quick responses
llama3:7b7B8GBGeneral purpose
llama3:13b13B16GBAdvanced tasks
llama3:70b70B48GBProfessional use
codellama7-34B8-32GBCode generation

🚀 Quick Start

# Clone the repository git clone https://github.com/yobieben/llama4-maverick-mcp-python.git cd llama4-maverick-mcp-python # Run setup (handles everything) python setup.py # Start the server python -m llama4_maverick_mcp.server

That's it! The server is now running and ready to connect to Claude Desktop.

📦 Detailed Installation

Step 1: Python Setup

# Check Python version python --version # Should be 3.9+ # Create virtual environment (recommended) python -m venv venv # Activate virtual environment # Linux/macOS: source venv/bin/activate # Windows: venv\Scripts\activate

Step 2: Install Dependencies

# Install the package in development mode pip install -e . # For development with testing tools pip install -e .[dev]

Step 3: Install Ollama

# macOS brew install ollama # Linux curl -fsSL https://ollama.com/install.sh | sh # Windows # Download from https://ollama.com/download/windows

Step 4: Configure Environment

# Copy example configuration cp .env.example .env # Edit configuration nano .env # or your preferred editor

Step 5: Download Models

# Start Ollama service ollama serve # In another terminal, pull models ollama pull llama3:latest ollama pull codellama:latest ollama pull tinyllama:latest

Step 6: Configure Claude Desktop

Add to Claude Desktop configuration:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

{ "mcpServers": { "llama4-python": { "command": "python", "args": ["-m", "llama4_maverick_mcp.server"], "cwd": "/path/to/llama4-maverick-mcp-python", "env": { "PYTHONPATH": "/path/to/llama4-maverick-mcp-python/src", "LLAMA_MODEL_NAME": "llama3:latest" } } } }

⚙️ Configuration

Environment Variables

Create a .env file:

# Ollama Configuration LLAMA_API_URL=http://localhost:11434 LLAMA_MODEL_NAME=llama3:latest LLAMA_API_KEY= # Optional # Server Configuration MCP_LOG_LEVEL=INFO MCP_SERVER_HOST=localhost MCP_SERVER_PORT=3000 # Features ENABLE_STREAMING=true ENABLE_FUNCTION_CALLING=true ENABLE_VISION=false ENABLE_CODE_EXECUTION=false # Security risk ENABLE_WEB_SEARCH=true # Model Parameters TEMPERATURE=0.7 # 0.0-2.0 TOP_P=0.9 # 0.0-1.0 TOP_K=40 # 1-100 REPEAT_PENALTY=1.1 SEED=42 # For reproducibility # File System FILE_SYSTEM_BASE_PATH=/safe/path ALLOW_FILE_WRITES=true # Performance MAX_CONTEXT_LENGTH=128000 MAX_CONCURRENT_REQUESTS=10 REQUEST_TIMEOUT_MS=30000 CACHE_TTL=3600 CACHE_MAX_SIZE=1000 # Debug DEBUG=false VERBOSE_LOGGING=false

Configuration Classes

from llama4_maverick_mcp.config import Config # Create custom configuration config = Config( llama_model_name="codellama:latest", temperature=0.3, enable_code_execution=True ) # Access configuration print(config.llama_model_name) print(config.get_model_params())

🛠️ Available Tools

Built-in Tools

ToolDescriptionExample
calculatorMathematical calculations2 + 2, sqrt(16)
datetimeDate/time operationsCurrent time, date math
json_toolJSON manipulationParse, extract, transform
web_searchSearch the webQuery for information
file_readRead filesAccess local files
file_writeWrite filesSave data locally
list_filesList directoriesBrowse file system
code_executorRun codeExecute Python/JS/Bash
http_requestHTTP callsAPI interactions

Creating Custom Tools

# src/llama4_maverick_mcp/tools/custom/my_tool.py from pydantic import BaseModel, Field from ..base import BaseTool, ToolResult class MyToolParams(BaseModel): """Parameters for my custom tool.""" input_text: str = Field(..., description="Text to process") option: str = Field(default="default", description="Processing option") class MyCustomTool(BaseTool): @property def name(self) -> str: return "my_custom_tool" @property def description(self) -> str: return "Performs custom processing on text" @property def parameters(self) -> type[BaseModel]: return MyToolParams async def execute(self, input_text: str, option: str = "default") -> ToolResult: # Your custom logic here result = f"Processed: {input_text} with option: {option}" return ToolResult( success=True, data={"result": result, "length": len(input_text)} )

📊 Usage Examples

Basic Usage

import asyncio from llama4_maverick_mcp import MCPServer, Config async def main(): # Create server with custom config config = Config( llama_model_name="llama3:latest", temperature=0.7 ) server = MCPServer(config) # Run the server await server.run() if __name__ == "__main__": asyncio.run(main())

Direct API Usage

from llama4_maverick_mcp import LlamaService, Config async def generate_text(): config = Config() llama = LlamaService(config) await llama.initialize() # Simple completion result = await llama.complete( prompt="Explain quantum computing", temperature=0.5, max_tokens=200 ) print(result) # Chat completion messages = [ {"role": "system", "content": "You are a helpful assistant"}, {"role": "user", "content": "What is Python?"} ] response = await llama.complete_chat(messages) print(response)

Tool Execution

from llama4_maverick_mcp.tools import ToolManager async def use_tools(): manager = ToolManager(Config()) await manager.initialize() # Execute calculator result = await manager.execute_tool( "calculator", {"expression": "factorial(5) + sqrt(16)"} ) print(result) # Read file content = await manager.execute_tool( "file_read", {"path": "config.json"} ) print(content)

🌟 Real-World Applications

1. Document Analysis Pipeline

class DocumentAnalyzer: def __init__(self): self.config = Config(temperature=0.3) self.llama = LlamaService(self.config) self.tools = ToolManager(self.config) async def analyze_documents(self, directory: str): # List all documents files = await self.tools.execute_tool( "list_files", {"path": directory, "recursive": True} ) results = [] for file in files['data']['files']: if file.endswith(('.txt', '.md', '.pdf')): # Read document content = await self.tools.execute_tool( "file_read", {"path": file} ) # Analyze with Llama analysis = await self.llama.complete( prompt=f"Summarize and extract key points: {content['data']}", max_tokens=500 ) results.append({ "file": file, "analysis": analysis }) return results

2. Code Review System

class CodeReviewer: async def review_code(self, code: str, language: str = "python"): prompt = f""" Review this {language} code for: 1. Security vulnerabilities 2. Performance issues 3. Best practices 4. Potential bugs Code: ```{language} {code} ``` Provide specific suggestions for improvement. """ review = await llama_service.complete( prompt=prompt, model="codellama:latest", temperature=0.3 ) return self.parse_review(review)

3. Research Assistant

class ResearchAssistant: async def research_topic(self, topic: str): # Search for information search_results = await self.tools.execute_tool( "web_search", {"query": topic, "max_results": 10} ) # Analyze sources analysis = await self.llama.complete( prompt=f"Analyze these sources about {topic}: {search_results}", temperature=0.5 ) # Generate report report = await self.llama.complete( prompt=f"Write a comprehensive report on {topic} based on: {analysis}", temperature=0.7, max_tokens=2000 ) # Save report await self.tools.execute_tool( "file_write", { "path": f"research_{topic}_{datetime.now().strftime('%Y%m%d')}.md", "content": report } ) return report

🧪 Development

Running Tests

# Run all tests pytest # Run with coverage pytest --cov=llama4_maverick_mcp # Run specific test pytest tests/test_llama_service.py # Run with verbose output pytest -v

Code Quality

# Format code with Black black src/ # Lint with Ruff ruff check src/ # Type checking with mypy mypy src/ # All quality checks make quality

Creating Tests

# tests/test_my_tool.py import pytest from llama4_maverick_mcp.tools.custom.my_tool import MyCustomTool @pytest.mark.asyncio async def test_my_custom_tool(): tool = MyCustomTool() result = await tool.execute( input_text="Hello, world!", option="uppercase" ) assert result.success assert "Hello, world!" in result.data["result"] assert result.data["length"] == 13

🚀 Performance Optimization

1. Use uvloop (Linux/macOS)

# Automatically enabled if available # 2-4x performance improvement for async operations pip install uvloop

2. Model Optimization

# Use smaller models for simple tasks config = Config( llama_model_name="tinyllama:latest", # 1.1B params, very fast max_context_length=4096, # Reduce context for speed temperature=0.1 # Lower temperature for consistency )

3. Caching Strategy

from functools import lru_cache from cachetools import TTLCache class CachedLlamaService(LlamaService): def __init__(self, config): super().__init__(config) self.cache = TTLCache(maxsize=1000, ttl=3600) async def complete(self, prompt: str, **kwargs): cache_key = f"{prompt}:{kwargs}" if cache_key in self.cache: return self.cache[cache_key] result = await super().complete(prompt, **kwargs) self.cache[cache_key] = result return result

4. Batch Processing

import asyncio async def batch_process(prompts: list): # Process multiple prompts concurrently tasks = [ llama_service.complete(prompt, temperature=0.5) for prompt in prompts ] # Limit concurrency to avoid overwhelming the system semaphore = asyncio.Semaphore(5) async def limited_task(task): async with semaphore: return await task results = await asyncio.gather(*[limited_task(t) for t in tasks]) return results

🔧 Troubleshooting

Common Issues

IssueSolution
ImportErrorCheck Python path: export PYTHONPATH=$PYTHONPATH:$(pwd)/src
Ollama not foundInstall: curl -fsSL https://ollama.com/install.sh | sh
Model not availablePull model: ollama pull llama3:latest
Permission deniedCheck file permissions and base path configuration
Memory errorUse smaller model or increase system RAM
Timeout errorsIncrease REQUEST_TIMEOUT_MS in configuration

Debug Mode

# Enable detailed logging config = Config( debug_mode=True, verbose_logging=True, log_level="DEBUG" ) # Or via environment export DEBUG=true export MCP_LOG_LEVEL=DEBUG export VERBOSE_LOGGING=true

Health Check

async def health_check(): """Check system health.""" checks = { "python_version": sys.version, "ollama_connected": config.validate_ollama_connection(), "models_available": await llama_service.list_models(), "tools_loaded": len(await tool_manager.get_tools()), "memory_usage": psutil.virtual_memory().percent, "disk_usage": psutil.disk_usage('/').percent } return { "status": "healthy" if all(checks.values()) else "degraded", "checks": checks, "timestamp": datetime.now().isoformat() }

🤝 Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

Areas for Contribution

  • 🛠️ New tools and integrations
  • 📝 Documentation improvements
  • 🐛 Bug fixes
  • 🚀 Performance optimizations
  • 🧪 Test coverage
  • 🌐 Internationalization

Development Workflow

# Fork and clone git clone https://github.com/YOUR_USERNAME/llama4-maverick-mcp-python.git # Create branch git checkout -b feature/your-feature # Make changes and test pytest # Commit with conventional commits git commit -m "feat: add new amazing feature" # Push and create PR git push origin feature/your-feature

📄 License

MIT License - See LICENSE file

👨‍💻 Author

Yobie Benjamin
Version 0.9
August 1, 2025

🙏 Acknowledgments

  • Anthropic for the MCP protocol
  • Ollama team for local model hosting
  • Meta for Llama models
  • Python community for excellent libraries

📞 Support


Ready to experience the power of local AI? Start with Llama 4 Maverick MCP Python today! 🦙🐍🚀

-
security - not tested
F
license - not found
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

Bridges Llama models with Claude Desktop through Ollama, enabling privacy-first local AI operations with 10+ built-in tools for file operations, web search, calculations, and custom model deployment. Features streaming support, hybrid intelligence workflows, and extensive Python ecosystem integration for research, development, and enterprise applications.

  1. 📚 Table of Contents
    1. 🎯 What Would You Use This Llama MCP Server For?
      1. The Revolution of Local AI + Claude Desktop
      2. 1. Privacy-First AI Operations 🔒
      3. 2. Custom Model Deployment 🎯
      4. 3. Hybrid Intelligence Systems 🔄
      5. 4. Offline and Edge Computing 🌐
      6. 5. Experimentation and Research 🧪
      7. 6. Cost-Effective Scaling 💰
      8. 7. Real-Time Processing ⚡
      9. 8. Custom Tool Integration 🛠️
      10. 9. Compliance and Governance 📋
      11. 10. Educational Environments 🎓
    2. 🐍 Why Python?
      1. Advantages Over TypeScript/Node.js
    3. ✨ Features
      1. Core Capabilities
      2. Python-Specific Features
    4. 💻 System Requirements
      1. Minimum Requirements
      2. Model Requirements
    5. 🚀 Quick Start
      1. 📦 Detailed Installation
        1. Step 1: Python Setup
        2. Step 2: Install Dependencies
        3. Step 3: Install Ollama
        4. Step 4: Configure Environment
        5. Step 5: Download Models
        6. Step 6: Configure Claude Desktop
      2. ⚙️ Configuration
        1. Environment Variables
        2. Configuration Classes
      3. 🛠️ Available Tools
        1. Built-in Tools
        2. Creating Custom Tools
      4. 📊 Usage Examples
        1. Basic Usage
        2. Direct API Usage
        3. Tool Execution
      5. 🌟 Real-World Applications
        1. 1. Document Analysis Pipeline
        2. 2. Code Review System
        3. 3. Research Assistant
      6. 🧪 Development
        1. Running Tests
        2. Code Quality
        3. Creating Tests
      7. 🚀 Performance Optimization
        1. 1. Use uvloop (Linux/macOS)
        2. 2. Model Optimization
        3. 3. Caching Strategy
        4. 4. Batch Processing
      8. 🔧 Troubleshooting
        1. Common Issues
        2. Debug Mode
        3. Health Check
      9. 🤝 Contributing
        1. Areas for Contribution
        2. Development Workflow
      10. 📄 License
        1. 👨‍💻 Author
          1. 🙏 Acknowledgments
            1. 📞 Support

              Related MCP Servers

              • A
                security
                F
                license
                A
                quality
                A bridge that enables seamless integration of Ollama's local LLM capabilities into MCP-powered applications, allowing users to manage and run AI models locally with full API coverage.
                Last updated -
                10
                73
                • Apple
              • -
                security
                A
                license
                -
                quality
                A lightweight bridge that wraps OpenAI's built-in tools (like web search and code interpreter) as Model Context Protocol servers, enabling their use with Claude and other MCP-compatible models.
                Last updated -
                11
                MIT License
                • Apple
              • -
                security
                A
                license
                -
                quality
                A bridge that allows Claude to communicate with locally running LLM models via LM Studio, enabling users to leverage their private models through Claude's interface.
                Last updated -
                111
                MIT License
              • -
                security
                F
                license
                -
                quality
                Gives Claude access to multiple AI models (Gemini, OpenAI, OpenRouter, Ollama) for enhanced development capabilities including extended reasoning, collaborative development, code review, and advanced debugging.
                Last updated -
                • Apple
                • Linux

              View all related MCP servers

              MCP directory API

              We provide all the information about MCP servers via our MCP API.

              curl -X GET 'https://glama.ai/api/mcp/v1/servers/YobieBen/llama4-maverick-mcp-python'

              If you have feedback or need assistance with the MCP directory API, please join our Discord server