Skip to main content
Glama

Llama 4 Maverick MCP Server

by YobieBen

๐Ÿฆ™ Llama 4 Maverick MCP Server (Python)

Author: Yobie Benjamin
Version: 0.9
Date: August 1, 2025

A Python implementation of the Model Context Protocol (MCP) server that bridges Llama models with Claude Desktop through Ollama. This pure Python solution offers clean architecture, high performance, and easy extensibility.

๐Ÿ“š Table of Contents

๐ŸŽฏ What Would You Use This Llama MCP Server For?

The Revolution of Local AI + Claude Desktop

This Python MCP server creates a powerful bridge between Claude Desktop's sophisticated interface and your locally-hosted Llama models. Here's what makes this combination revolutionary:

1. Privacy-First AI Operations ๐Ÿ”’

The Challenge: Organizations handling sensitive data can't use cloud AI due to privacy concerns.

The Solution: This MCP server keeps everything local while providing enterprise-grade AI capabilities.

Real-World Applications:

  • Healthcare: A hospital can analyze patient records using AI without violating HIPAA compliance

  • Legal: Law firms can process confidential client documents with complete privacy

  • Finance: Banks can analyze transaction data without exposing customer information

  • Government: Agencies can process classified documents on air-gapped systems

Example Implementation:

# Process sensitive medical records locally async def analyze_patient_data(patient_file): # Data never leaves your server content = await tool_manager.execute("read_file", {"path": patient_file}) # Use specialized medical model analysis = await llama_service.complete( prompt=f"Analyze patient data for risk factors: {content}", model="medical-llama:latest", # Your HIPAA-compliant fine-tuned model temperature=0.1 # Low temperature for medical accuracy ) # Store results locally with encryption await secure_storage.save(analysis, encrypted=True)

2. Custom Model Deployment ๐ŸŽฏ

The Challenge: Generic models don't understand your domain-specific language and requirements.

The Solution: Deploy your own fine-tuned models through the MCP interface.

Real-World Applications:

  • Research Labs: Use models trained on proprietary research data

  • Enterprises: Deploy models fine-tuned on company documentation

  • Educational Institutions: Use models trained on curriculum-specific content

  • Industry-Specific: Legal, medical, financial, or technical domain models

Example Implementation:

# Switch between specialized models based on task class ModelSelector: def __init__(self): self.models = { "general": "llama3:latest", "code": "codellama:latest", "medical": "medical-llama:13b", "legal": "legal-llama:7b", "finance": "finance-llama:13b" } async def select_and_query(self, domain: str, prompt: str): model = self.models.get(domain, "llama3:latest") return await llama_service.complete( prompt=prompt, model=model, temperature=0.3 if domain in ["medical", "legal"] else 0.7 )

3. Hybrid Intelligence Systems ๐Ÿ”„

The Challenge: No single AI model excels at everything.

The Solution: Combine Claude's reasoning with Llama's generation capabilities.

Real-World Applications:

  • Software Development: Claude plans architecture, Llama generates implementation

  • Content Creation: Claude creates outlines, Llama writes detailed content

  • Data Analysis: Claude interprets results, Llama generates reports

  • Research: Claude formulates hypotheses, Llama explores implications

Example Implementation:

# Hybrid workflow combining Claude and Llama class HybridAI: async def complex_task(self, requirement: str): # Step 1: Use Claude for high-level planning plan = await claude.create_plan(requirement) # Step 2: Use local Llama for detailed implementation implementation = await llama_service.complete( prompt=f"Implement this plan: {plan}", model="codellama:34b", max_tokens=4096 ) # Step 3: Use Claude for review and refinement refined = await claude.review_and_refine(implementation) return refined

4. Offline and Edge Computing ๐ŸŒ

The Challenge: Many environments lack reliable internet or prohibit cloud connections.

The Solution: Full AI capabilities without any internet requirement.

Real-World Applications:

  • Remote Operations: Oil rigs, ships, remote research stations

  • Industrial IoT: Factory floors with real-time requirements

  • Field Work: Geological surveys, wildlife research, disaster response

  • Secure Facilities: Military bases, research labs, government buildings

Example Implementation:

# Edge deployment for industrial quality control class EdgeQualityControl: def __init__(self): self.config = Config( llama_model_name="quality-control:latest", enable_streaming=True, max_context_length=8192 # Optimized for edge devices ) async def inspect_product(self, sensor_data: dict): # Process sensor data locally analysis = await llama_service.complete( prompt=f"Analyze sensor readings for defects: {sensor_data}", temperature=0.1, # Consistent results needed max_tokens=256 # Quick response for real-time processing ) # Trigger local actions based on analysis if "defect" in analysis.lower(): await self.trigger_alert(analysis) return analysis

5. Experimentation and Research ๐Ÿงช

The Challenge: Researchers need reproducible results and full control over model behavior.

The Solution: Complete transparency and control over every aspect of the AI pipeline.

Real-World Applications:

  • Academic Research: Reproducible experiments for papers

  • Model Comparison: A/B testing different models and parameters

  • Behavior Analysis: Understanding how models respond to different inputs

  • Prompt Engineering: Developing optimal prompts for specific tasks

Example Implementation:

# Research experiment framework class ExperimentRunner: async def run_experiment(self, hypothesis: str, test_cases: list): results = [] # Test multiple models for model in ["llama3:7b", "llama3:13b", "llama3:70b"]: # Test multiple parameters for temp in [0.1, 0.5, 0.9, 1.5]: model_results = [] for test in test_cases: response = await llama_service.complete( prompt=test, model=model, temperature=temp, seed=42 # Reproducible results ) model_results.append({ "input": test, "output": response, "model": model, "temperature": temp, "timestamp": datetime.now() }) results.append(model_results) # Analyze and save results analysis = self.analyze_results(results) await self.save_experiment(hypothesis, results, analysis) return analysis

6. Cost-Effective Scaling ๐Ÿ’ฐ

The Challenge: API costs can become prohibitive for high-volume applications.

The Solution: One-time hardware investment for unlimited usage.

Real-World Applications:

  • Startups: Prototype without burning through funding

  • Education: Provide AI access to all students without budget concerns

  • Non-profits: Leverage AI without ongoing costs

  • High-volume Processing: Batch jobs, data analysis, content generation

Cost Analysis Example:

# Cost comparison calculator class CostAnalyzer: def calculate_savings(self, monthly_tokens: int): # API costs (approximate) api_cost_per_million = 15.00 # USD monthly_api_cost = (monthly_tokens / 1_000_000) * api_cost_per_million # Local costs (one-time hardware) hardware_cost = 2000 # Good GPU setup electricity_monthly = 50 # Approximate # Calculate break-even months_to_break_even = hardware_cost / (monthly_api_cost - electricity_monthly) return { "monthly_api_cost": monthly_api_cost, "monthly_local_cost": electricity_monthly, "monthly_savings": monthly_api_cost - electricity_monthly, "break_even_months": months_to_break_even, "first_year_savings": (monthly_api_cost * 12) - (hardware_cost + electricity_monthly * 12) }

7. Real-Time Processing โšก

The Challenge: Network latency makes cloud AI unsuitable for real-time applications.

The Solution: Sub-second response times with local processing.

Real-World Applications:

  • Trading Systems: Analyze market data in milliseconds

  • Gaming: Real-time NPC dialogue and behavior

  • Robotics: Immediate response to sensor inputs

  • Live Translation: Instant language translation

Example Implementation:

# Real-time stream processing class StreamProcessor: def __init__(self): self.buffer = [] self.processing = False async def process_stream(self, data_stream): async for chunk in data_stream: self.buffer.append(chunk) if not self.processing and len(self.buffer) > 0: self.processing = True # Process immediately without network delay result = await llama_service.complete( prompt=f"Analyze: {self.buffer[-1]}", model="tinyllama:latest", # Fast model for real-time max_tokens=50, stream=True ) async for token in result: yield token # Stream results immediately self.processing = False

8. Custom Tool Integration ๐Ÿ› ๏ธ

The Challenge: Generic AI can't interact with your specific systems and databases.

The Solution: Build custom tools that integrate with your infrastructure.

Real-World Applications:

  • DevOps: AI that can manage your specific infrastructure

  • Database Management: Query and manage your databases via natural language

  • System Administration: Automate complex administrative tasks

  • Business Intelligence: Connect to your BI tools and data warehouses

Example Implementation:

# Custom tool for database operations class DatabaseTool(BaseTool): @property def name(self) -> str: return "company_database" @property def description(self) -> str: return "Query and manage company database" async def execute(self, query: str, operation: str = "select") -> ToolResult: # Connect to your specific database async with get_company_db() as db: if operation == "select": results = await db.fetch(query) return ToolResult(success=True, data=results) elif operation == "analyze": # Use Llama to analyze query results analysis = await llama_service.complete( prompt=f"Analyze this data: {results}", temperature=0.3 ) return ToolResult(success=True, data=analysis)

9. Compliance and Governance ๐Ÿ“‹

The Challenge: Regulatory requirements demand complete control and audit trails.

The Solution: Full transparency and logging of all AI operations.

Real-World Applications:

  • Healthcare: HIPAA compliance with audit trails

  • Finance: SOX compliance with transaction monitoring

  • Legal: Attorney-client privilege protection

  • Government: Security clearance requirements

Example Implementation:

# Compliance-aware AI system class ComplianceAI: def __init__(self): self.audit_logger = AuditLogger() self.encryption = EncryptionService() async def process_regulated_data(self, data: str, user: str, purpose: str): # Log access for audit audit_id = await self.audit_logger.log_access( user=user, data_type="regulated", purpose=purpose, timestamp=datetime.now() ) # Encrypt data in transit encrypted = self.encryption.encrypt(data) # Process with local model (data never leaves premises) result = await llama_service.complete( prompt=f"Process: {encrypted}", model="compliance-llama:latest" ) # Log completion await self.audit_logger.log_completion( audit_id=audit_id, success=True, result_hash=hashlib.sha256(result.encode()).hexdigest() ) return self.encryption.encrypt(result)

10. Educational Environments ๐ŸŽ“

The Challenge: Educational institutions need affordable AI access for all students.

The Solution: Single deployment serves unlimited students without per-use costs.

Real-World Applications:

  • Computer Science: Teaching AI/ML concepts hands-on

  • Research Projects: Student research without budget constraints

  • Writing Centers: AI-assisted writing for all students

  • Language Learning: Personalized language practice

Example Implementation:

# Educational AI assistant class EducationalAssistant: def __init__(self): self.student_profiles = {} self.learning_analytics = LearningAnalytics() async def personalized_tutoring(self, student_id: str, subject: str, question: str): # Get student's learning profile profile = self.student_profiles.get(student_id, self.create_profile(student_id)) # Adjust response based on student level response = await llama_service.complete( prompt=f""" Student Level: {profile['level']} Subject: {subject} Question: {question} Provide an explanation appropriate for this student's level. """, temperature=0.7, model="education-llama:latest" ) # Track learning progress await self.learning_analytics.record_interaction( student_id=student_id, subject=subject, question=question, response=response ) return response

๐Ÿ Why Python?

Advantages Over TypeScript/Node.js

Aspect

Python Advantage

Use Case

Scientific Computing

NumPy, SciPy, Pandas integration

Data analysis, research

ML Ecosystem

Direct integration with PyTorch, TensorFlow

Model experimentation

Simplicity

Cleaner async/await syntax

Faster development

Libraries

Vast ecosystem of AI/ML tools

Extended functionality

Debugging

Better error messages and debugging tools

Easier troubleshooting

Performance

uvloop for high-performance async

Better concurrency

Type Safety

Type hints + Pydantic validation

Runtime validation

โœจ Features

Core Capabilities

  • ๐Ÿš€ High Performance: Async/await with uvloop support

  • ๐Ÿ› ๏ธ 10+ Built-in Tools: Web search, file ops, calculations, and more

  • ๐Ÿ“ Prompt Templates: Pre-defined prompts for common tasks

  • ๐Ÿ“ Resource Management: Access templates and documentation

  • ๐Ÿ”„ Streaming Support: Real-time token generation

  • ๐Ÿ”ง Highly Configurable: Environment-based configuration

  • ๐Ÿ“Š Structured Logging: Comprehensive debugging support

  • ๐Ÿงช Fully Tested: Pytest test suite included

Python-Specific Features

  • ๐Ÿผ Data Science Integration: Works with Pandas, NumPy

  • ๐Ÿค– ML Framework Compatible: Integrate with PyTorch, TensorFlow

  • ๐Ÿ“ˆ Analytics Built-in: Performance metrics and monitoring

  • ๐Ÿ”Œ Plugin System: Easy to extend with Python packages

  • ๐ŸŽฏ Type Safety: Pydantic models for validation

  • ๐Ÿ”’ Security: Built-in sanitization and validation

๐Ÿ’ป System Requirements

Minimum Requirements

Component

Minimum

Recommended

Optimal

Python

3.9+

3.11+

Latest

CPU

4 cores

8 cores

16+ cores

RAM

8GB

16GB

32GB+

Storage

10GB SSD

50GB SSD

100GB NVMe

OS

Linux/macOS/Windows

Ubuntu 22.04

Latest Linux

Model Requirements

Model

Parameters

RAM

Use Case

tinyllama

1.1B

2GB

Testing, quick responses

llama3:7b

7B

8GB

General purpose

llama3:13b

13B

16GB

Advanced tasks

llama3:70b

70B

48GB

Professional use

codellama

7-34B

8-32GB

Code generation

๐Ÿš€ Quick Start

# Clone the repository git clone https://github.com/yobieben/llama4-maverick-mcp-python.git cd llama4-maverick-mcp-python # Run setup (handles everything) python setup.py # Start the server python -m llama4_maverick_mcp.server

That's it! The server is now running and ready to connect to Claude Desktop.

๐Ÿ“ฆ Detailed Installation

Step 1: Python Setup

# Check Python version python --version # Should be 3.9+ # Create virtual environment (recommended) python -m venv venv # Activate virtual environment # Linux/macOS: source venv/bin/activate # Windows: venv\Scripts\activate

Step 2: Install Dependencies

# Install the package in development mode pip install -e . # For development with testing tools pip install -e .[dev]

Step 3: Install Ollama

# macOS brew install ollama # Linux curl -fsSL https://ollama.com/install.sh | sh # Windows # Download from https://ollama.com/download/windows

Step 4: Configure Environment

# Copy example configuration cp .env.example .env # Edit configuration nano .env # or your preferred editor

Step 5: Download Models

# Start Ollama service ollama serve # In another terminal, pull models ollama pull llama3:latest ollama pull codellama:latest ollama pull tinyllama:latest

Step 6: Configure Claude Desktop

Add to Claude Desktop configuration:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

{ "mcpServers": { "llama4-python": { "command": "python", "args": ["-m", "llama4_maverick_mcp.server"], "cwd": "/path/to/llama4-maverick-mcp-python", "env": { "PYTHONPATH": "/path/to/llama4-maverick-mcp-python/src", "LLAMA_MODEL_NAME": "llama3:latest" } } } }

โš™๏ธ Configuration

Environment Variables

Create a .env file:

# Ollama Configuration LLAMA_API_URL=http://localhost:11434 LLAMA_MODEL_NAME=llama3:latest LLAMA_API_KEY= # Optional # Server Configuration MCP_LOG_LEVEL=INFO MCP_SERVER_HOST=localhost MCP_SERVER_PORT=3000 # Features ENABLE_STREAMING=true ENABLE_FUNCTION_CALLING=true ENABLE_VISION=false ENABLE_CODE_EXECUTION=false # Security risk ENABLE_WEB_SEARCH=true # Model Parameters TEMPERATURE=0.7 # 0.0-2.0 TOP_P=0.9 # 0.0-1.0 TOP_K=40 # 1-100 REPEAT_PENALTY=1.1 SEED=42 # For reproducibility # File System FILE_SYSTEM_BASE_PATH=/safe/path ALLOW_FILE_WRITES=true # Performance MAX_CONTEXT_LENGTH=128000 MAX_CONCURRENT_REQUESTS=10 REQUEST_TIMEOUT_MS=30000 CACHE_TTL=3600 CACHE_MAX_SIZE=1000 # Debug DEBUG=false VERBOSE_LOGGING=false

Configuration Classes

from llama4_maverick_mcp.config import Config # Create custom configuration config = Config( llama_model_name="codellama:latest", temperature=0.3, enable_code_execution=True ) # Access configuration print(config.llama_model_name) print(config.get_model_params())

๐Ÿ› ๏ธ Available Tools

Built-in Tools

Tool

Description

Example

calculator

Mathematical calculations

2 + 2

,

sqrt(16)

datetime

Date/time operations

Current time, date math

json_tool

JSON manipulation

Parse, extract, transform

web_search

Search the web

Query for information

file_read

Read files

Access local files

file_write

Write files

Save data locally

list_files

List directories

Browse file system

code_executor

Run code

Execute Python/JS/Bash

http_request

HTTP calls

API interactions

Creating Custom Tools

# src/llama4_maverick_mcp/tools/custom/my_tool.py from pydantic import BaseModel, Field from ..base import BaseTool, ToolResult class MyToolParams(BaseModel): """Parameters for my custom tool.""" input_text: str = Field(..., description="Text to process") option: str = Field(default="default", description="Processing option") class MyCustomTool(BaseTool): @property def name(self) -> str: return "my_custom_tool" @property def description(self) -> str: return "Performs custom processing on text" @property def parameters(self) -> type[BaseModel]: return MyToolParams async def execute(self, input_text: str, option: str = "default") -> ToolResult: # Your custom logic here result = f"Processed: {input_text} with option: {option}" return ToolResult( success=True, data={"result": result, "length": len(input_text)} )

๐Ÿ“Š Usage Examples

Basic Usage

import asyncio from llama4_maverick_mcp import MCPServer, Config async def main(): # Create server with custom config config = Config( llama_model_name="llama3:latest", temperature=0.7 ) server = MCPServer(config) # Run the server await server.run() if __name__ == "__main__": asyncio.run(main())

Direct API Usage

from llama4_maverick_mcp import LlamaService, Config async def generate_text(): config = Config() llama = LlamaService(config) await llama.initialize() # Simple completion result = await llama.complete( prompt="Explain quantum computing", temperature=0.5, max_tokens=200 ) print(result) # Chat completion messages = [ {"role": "system", "content": "You are a helpful assistant"}, {"role": "user", "content": "What is Python?"} ] response = await llama.complete_chat(messages) print(response)

Tool Execution

from llama4_maverick_mcp.tools import ToolManager async def use_tools(): manager = ToolManager(Config()) await manager.initialize() # Execute calculator result = await manager.execute_tool( "calculator", {"expression": "factorial(5) + sqrt(16)"} ) print(result) # Read file content = await manager.execute_tool( "file_read", {"path": "config.json"} ) print(content)

๐ŸŒŸ Real-World Applications

1. Document Analysis Pipeline

class DocumentAnalyzer: def __init__(self): self.config = Config(temperature=0.3) self.llama = LlamaService(self.config) self.tools = ToolManager(self.config) async def analyze_documents(self, directory: str): # List all documents files = await self.tools.execute_tool( "list_files", {"path": directory, "recursive": True} ) results = [] for file in files['data']['files']: if file.endswith(('.txt', '.md', '.pdf')): # Read document content = await self.tools.execute_tool( "file_read", {"path": file} ) # Analyze with Llama analysis = await self.llama.complete( prompt=f"Summarize and extract key points: {content['data']}", max_tokens=500 ) results.append({ "file": file, "analysis": analysis }) return results

2. Code Review System

class CodeReviewer: async def review_code(self, code: str, language: str = "python"): prompt = f""" Review this {language} code for: 1. Security vulnerabilities 2. Performance issues 3. Best practices 4. Potential bugs Code: ```{language} {code} ``` Provide specific suggestions for improvement. """ review = await llama_service.complete( prompt=prompt, model="codellama:latest", temperature=0.3 ) return self.parse_review(review)

3. Research Assistant

class ResearchAssistant: async def research_topic(self, topic: str): # Search for information search_results = await self.tools.execute_tool( "web_search", {"query": topic, "max_results": 10} ) # Analyze sources analysis = await self.llama.complete( prompt=f"Analyze these sources about {topic}: {search_results}", temperature=0.5 ) # Generate report report = await self.llama.complete( prompt=f"Write a comprehensive report on {topic} based on: {analysis}", temperature=0.7, max_tokens=2000 ) # Save report await self.tools.execute_tool( "file_write", { "path": f"research_{topic}_{datetime.now().strftime('%Y%m%d')}.md", "content": report } ) return report

๐Ÿงช Development

Running Tests

# Run all tests pytest # Run with coverage pytest --cov=llama4_maverick_mcp # Run specific test pytest tests/test_llama_service.py # Run with verbose output pytest -v

Code Quality

# Format code with Black black src/ # Lint with Ruff ruff check src/ # Type checking with mypy mypy src/ # All quality checks make quality

Creating Tests

# tests/test_my_tool.py import pytest from llama4_maverick_mcp.tools.custom.my_tool import MyCustomTool @pytest.mark.asyncio async def test_my_custom_tool(): tool = MyCustomTool() result = await tool.execute( input_text="Hello, world!", option="uppercase" ) assert result.success assert "Hello, world!" in result.data["result"] assert result.data["length"] == 13

๐Ÿš€ Performance Optimization

1. Use uvloop (Linux/macOS)

# Automatically enabled if available # 2-4x performance improvement for async operations pip install uvloop

2. Model Optimization

# Use smaller models for simple tasks config = Config( llama_model_name="tinyllama:latest", # 1.1B params, very fast max_context_length=4096, # Reduce context for speed temperature=0.1 # Lower temperature for consistency )

3. Caching Strategy

from functools import lru_cache from cachetools import TTLCache class CachedLlamaService(LlamaService): def __init__(self, config): super().__init__(config) self.cache = TTLCache(maxsize=1000, ttl=3600) async def complete(self, prompt: str, **kwargs): cache_key = f"{prompt}:{kwargs}" if cache_key in self.cache: return self.cache[cache_key] result = await super().complete(prompt, **kwargs) self.cache[cache_key] = result return result

4. Batch Processing

import asyncio async def batch_process(prompts: list): # Process multiple prompts concurrently tasks = [ llama_service.complete(prompt, temperature=0.5) for prompt in prompts ] # Limit concurrency to avoid overwhelming the system semaphore = asyncio.Semaphore(5) async def limited_task(task): async with semaphore: return await task results = await asyncio.gather(*[limited_task(t) for t in tasks]) return results

๐Ÿ”ง Troubleshooting

Common Issues

Issue

Solution

ImportError

Check Python path:

export PYTHONPATH=$PYTHONPATH:$(pwd)/src

Ollama not found

Install:

curl -fsSL https://ollama.com/install.sh | sh

Model not available

Pull model:

ollama pull llama3:latest

Permission denied

Check file permissions and base path configuration

Memory error

Use smaller model or increase system RAM

Timeout errors

Increase

REQUEST_TIMEOUT_MS

in configuration

Debug Mode

# Enable detailed logging config = Config( debug_mode=True, verbose_logging=True, log_level="DEBUG" ) # Or via environment export DEBUG=true export MCP_LOG_LEVEL=DEBUG export VERBOSE_LOGGING=true

Health Check

async def health_check(): """Check system health.""" checks = { "python_version": sys.version, "ollama_connected": config.validate_ollama_connection(), "models_available": await llama_service.list_models(), "tools_loaded": len(await tool_manager.get_tools()), "memory_usage": psutil.virtual_memory().percent, "disk_usage": psutil.disk_usage('/').percent } return { "status": "healthy" if all(checks.values()) else "degraded", "checks": checks, "timestamp": datetime.now().isoformat() }

๐Ÿค Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

Areas for Contribution

  • ๐Ÿ› ๏ธ New tools and integrations

  • ๐Ÿ“ Documentation improvements

  • ๐Ÿ› Bug fixes

  • ๐Ÿš€ Performance optimizations

  • ๐Ÿงช Test coverage

  • ๐ŸŒ Internationalization

Development Workflow

# Fork and clone git clone https://github.com/YOUR_USERNAME/llama4-maverick-mcp-python.git # Create branch git checkout -b feature/your-feature # Make changes and test pytest # Commit with conventional commits git commit -m "feat: add new amazing feature" # Push and create PR git push origin feature/your-feature

๐Ÿ“„ License

MIT License - See LICENSE file

๐Ÿ‘จโ€๐Ÿ’ป Author

Yobie Benjamin
Version 0.9
August 1, 2025

๐Ÿ™ Acknowledgments

  • Anthropic for the MCP protocol

  • Ollama team for local model hosting

  • Meta for Llama models

  • Python community for excellent libraries

๐Ÿ“ž Support


Ready to experience the power of local AI? Start with Llama 4 Maverick MCP Python today! ๐Ÿฆ™๐Ÿ๐Ÿš€

-
security - not tested
F
license - not found
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

Bridges Llama models with Claude Desktop through Ollama, enabling privacy-first local AI operations with 10+ built-in tools for file operations, web search, calculations, and custom model deployment. Features streaming support, hybrid intelligence workflows, and extensive Python ecosystem integration for research, development, and enterprise applications.

  1. ๐Ÿ“š Table of Contents
    1. ๐ŸŽฏ What Would You Use This Llama MCP Server For?
      1. The Revolution of Local AI + Claude Desktop
      2. 1. Privacy-First AI Operations ๐Ÿ”’
      3. 2. Custom Model Deployment ๐ŸŽฏ
      4. 3. Hybrid Intelligence Systems ๐Ÿ”„
      5. 4. Offline and Edge Computing ๐ŸŒ
      6. 5. Experimentation and Research ๐Ÿงช
      7. 6. Cost-Effective Scaling ๐Ÿ’ฐ
      8. 7. Real-Time Processing โšก
      9. 8. Custom Tool Integration ๐Ÿ› ๏ธ
      10. 9. Compliance and Governance ๐Ÿ“‹
      11. 10. Educational Environments ๐ŸŽ“
    2. ๐Ÿ Why Python?
      1. Advantages Over TypeScript/Node.js
    3. โœจ Features
      1. Core Capabilities
      2. Python-Specific Features
    4. ๐Ÿ’ป System Requirements
      1. Minimum Requirements
      2. Model Requirements
    5. ๐Ÿš€ Quick Start
      1. ๐Ÿ“ฆ Detailed Installation
        1. Step 1: Python Setup
        2. Step 2: Install Dependencies
        3. Step 3: Install Ollama
        4. Step 4: Configure Environment
        5. Step 5: Download Models
        6. Step 6: Configure Claude Desktop
      2. โš™๏ธ Configuration
        1. Environment Variables
        2. Configuration Classes
      3. ๐Ÿ› ๏ธ Available Tools
        1. Built-in Tools
        2. Creating Custom Tools
      4. ๐Ÿ“Š Usage Examples
        1. Basic Usage
        2. Direct API Usage
        3. Tool Execution
      5. ๐ŸŒŸ Real-World Applications
        1. 1. Document Analysis Pipeline
        2. 2. Code Review System
        3. 3. Research Assistant
      6. ๐Ÿงช Development
        1. Running Tests
        2. Code Quality
        3. Creating Tests
      7. ๐Ÿš€ Performance Optimization
        1. 1. Use uvloop (Linux/macOS)
        2. 2. Model Optimization
        3. 3. Caching Strategy
        4. 4. Batch Processing
      8. ๐Ÿ”ง Troubleshooting
        1. Common Issues
        2. Debug Mode
        3. Health Check
      9. ๐Ÿค Contributing
        1. Areas for Contribution
        2. Development Workflow
      10. ๐Ÿ“„ License
        1. ๐Ÿ‘จโ€๐Ÿ’ป Author
          1. ๐Ÿ™ Acknowledgments
            1. ๐Ÿ“ž Support

              Related MCP Servers

              • A
                security
                F
                license
                A
                quality
                A bridge that enables seamless integration of Ollama's local LLM capabilities into MCP-powered applications, allowing users to manage and run AI models locally with full API coverage.
                Last updated -
                10
                72
                • Apple
              • -
                security
                A
                license
                -
                quality
                A lightweight bridge that wraps OpenAI's built-in tools (like web search and code interpreter) as Model Context Protocol servers, enabling their use with Claude and other MCP-compatible models.
                Last updated -
                4
                11
                MIT License
                • Apple
              • -
                security
                A
                license
                -
                quality
                A bridge that allows Claude to communicate with locally running LLM models via LM Studio, enabling users to leverage their private models through Claude's interface.
                Last updated -
                115
                MIT License
              • -
                security
                F
                license
                -
                quality
                Gives Claude access to multiple AI models (Gemini, OpenAI, OpenRouter, Ollama) for enhanced development capabilities including extended reasoning, collaborative development, code review, and advanced debugging.
                Last updated -
                • Apple
                • Linux

              View all related MCP servers

              MCP directory API

              We provide all the information about MCP servers via our MCP API.

              curl -X GET 'https://glama.ai/api/mcp/v1/servers/YobieBen/llama4-maverick-mcp-python'

              If you have feedback or need assistance with the MCP directory API, please join our Discord server