Skip to main content
Glama

CloudNativePG MCP Server

An MCP (Model Context Protocol) server for managing PostgreSQL clusters using the CloudNativePG operator in Kubernetes.

Overview

This MCP server enables LLMs to interact with PostgreSQL clusters managed by the CloudNativePG operator. It provides high-level workflow tools for:

  • πŸ“‹ Listing and discovering PostgreSQL clusters

  • πŸ” Getting detailed cluster status and health information

  • πŸš€ Creating new PostgreSQL clusters with best practices

  • πŸ“ˆ Scaling clusters up or down

  • πŸ—‘οΈ Deleting PostgreSQL clusters with safety confirmations

  • πŸ‘₯ Managing PostgreSQL roles/users (list, create, update, delete)

  • πŸ—„οΈ Managing PostgreSQL databases (list, create, delete)

  • πŸ”„ Managing backups and restores (TODO)

  • πŸ“Š Monitoring cluster health and logs (TODO)

Prerequisites

  1. Kubernetes Cluster with CloudNativePG operator installed:

    kubectl apply -f https://raw.githubusercontent.com/cloudnative-pg/cloudnative-pg/release-1.22/releases/cnpg-1.22.0.yaml
  2. Python 3.11+ installed

  3. Kubernetes config file (kubeconfig) with cluster access at ~/.kube/config or set via KUBECONFIG environment variable

    • The server uses the Kubernetes Python client library (no kubectl CLI required)

  4. Appropriate RBAC permissions for the service account (see RBAC Setup below)

Installation

Option 1: Install via Smithery.ai (Recommended)

The easiest way to install and configure this MCP server is through Smithery.ai:

npx @smithery/cli install cnpg-mcp-server --client claude

This automatically:

  • Installs the required Python dependencies

  • Configures the MCP server in your Claude Desktop config

  • Sets up the appropriate environment variables

Option 2: Manual Installation

  1. Clone this repository:

    git clone https://github.com/helxplatform/cnpg-mcp.git cd cnpg-mcp
  2. Install Python dependencies:

    pip install -r requirements.txt
  3. Verify Kubernetes connectivity (optional):

    python -c "from kubernetes import config; config.load_kube_config(); print('βœ… Kubernetes config loaded successfully')"

    Or if you have kubectl installed:

    kubectl get nodes
  4. Configure for Claude Desktop (optional): Add to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):

    { "mcpServers": { "cnpg": { "command": "python", "args": ["/absolute/path/to/cnpg_mcp_server.py"], "env": { "KUBECONFIG": "/path/to/.kube/config" } } } }

Option 3: Install as Python Package

Install directly from source:

pip install git+https://github.com/helxplatform/cnpg-mcp.git

Then run:

cnpg-mcp-server

RBAC Setup

The MCP server needs permissions to interact with CloudNativePG resources. The CloudNativePG helm chart automatically creates ClusterRoles (cnpg-cloudnative-pg-edit, cnpg-cloudnative-pg-view), so you only need to create a ServiceAccount and bind it to these existing roles:

# Apply the RBAC configuration (ServiceAccount + RoleBindings) kubectl apply -f rbac.yaml

This creates:

  • A cnpg-mcp-server ServiceAccount

  • ClusterRoleBinding to cnpg-cloudnative-pg-edit (for managing clusters)

  • ClusterRoleBinding to view (for reading pods, events, logs)

Verify the setup:

# Check the service account was created kubectl get serviceaccount cnpg-mcp-server # Verify permissions kubectl auth can-i get clusters.postgresql.cnpg.io --as=system:serviceaccount:default:cnpg-mcp-server kubectl auth can-i create clusters.postgresql.cnpg.io --as=system:serviceaccount:default:cnpg-mcp-server

For read-only access: Change cnpg-cloudnative-pg-edit to cnpg-cloudnative-pg-view in rbac.yaml

Configuration

Transport Modes

The server supports two transport modes (currently only stdio is implemented):

1. stdio Transport (Default)

Communication over stdin/stdout. Best for local development and Claude Desktop integration.

# Run with default stdio transport python cnpg_mcp_server.py # Or explicitly specify stdio python cnpg_mcp_server.py --transport stdio

Characteristics:

  • βœ… Simple setup, no network configuration

  • βœ… Automatic process management

  • βœ… Secure (no network exposure)

  • ❌ Single client per server instance

  • ❌ Client and server must be on same machine

Use cases: Claude Desktop, local CLI tools, personal development

2. HTTP/SSE Transport (Future)

HTTP server with Server-Sent Events for remote access. Best for team environments and production deployments.

# Will be available in future version python cnpg_mcp_server.py --transport http --host 0.0.0.0 --port 3000

When implemented, will provide:

  • βœ… Multiple clients can connect

  • βœ… Remote access capability

  • βœ… Independent server lifecycle

  • βœ… Better for team/production use

  • ⚠️ Requires authentication/TLS setup

Use cases: Team-shared server, production deployments, Kubernetes services

The codebase is structured to easily add HTTP transport when needed. See the run_http_transport() function for implementation guidelines.

Kubernetes Configuration

The server uses your kubeconfig for authentication:

  • Local development: Uses ~/.kube/config

  • In-cluster: Automatically uses service account tokens

You can also set the KUBECONFIG environment variable:

export KUBECONFIG=/path/to/your/kubeconfig

Namespace Handling:

  • Most tools accept an optional namespace parameter

  • If not specified, the server automatically uses the current namespace from your Kubernetes context

  • This makes it easier to work with a default namespace without specifying it every time

  • You can check your current namespace with: kubectl config view --minify -o jsonpath='{..namespace}'

Running the Server

Command-Line Options

# View all available options python cnpg_mcp_server.py --help # Run with stdio transport (default) python cnpg_mcp_server.py # Explicitly specify transport mode python cnpg_mcp_server.py --transport stdio # Run with HTTP transport (when implemented) python cnpg_mcp_server.py --transport http --host 0.0.0.0 --port 3000

Standalone Mode (for testing)

python cnpg_mcp_server.py

Note: The server runs as a long-running process waiting for MCP requests. In stdio mode, it won't exit until interrupted. This is expected behavior.

With Claude Desktop

Add to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):

{ "mcpServers": { "cloudnative-pg": { "command": "python", "args": ["/path/to/cnpg_mcp_server.py"], "env": { "KUBECONFIG": "/path/to/.kube/config" } } } }

With Docker/Kubernetes Deployment

For production deployments, you can containerize the server:

FROM python:3.11-slim WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY cnpg_mcp_server.py . CMD ["python", "cnpg_mcp_server.py"]

Deploy as a Kubernetes service that can be accessed by your LLM application.

Available Tools

Enhanced Output Formats: 4 tools support optional JSON format for programmatic consumption:

  • list_postgres_clusters(format="json") - Structured cluster list

  • get_cluster_status(format="json") - Structured cluster details

  • list_postgres_roles(format="json") - Structured role list

  • list_postgres_databases(format="json") - Structured database list

All other tools return human-readable text optimized for LLM consumption.


Cluster Management

1. list_postgres_clusters

List all PostgreSQL clusters in the Kubernetes cluster.

Parameters:

  • namespace (optional): Filter by namespace. If not provided, uses the current namespace from your Kubernetes context

  • detail_level: "concise" (default) or "detailed"

  • format: "text" (default) or "json" - Output format for programmatic consumption

Example:

List all PostgreSQL clusters in production namespace

JSON Output: When format="json", returns structured data like:

{ "clusters": [...], "count": 3, "scope": "namespace 'production'" }

2. get_cluster_status

Get detailed status for a specific cluster.

Parameters:

  • name (required): Name of the cluster

  • namespace (optional): Namespace of the cluster. If not specified, uses the current namespace from your Kubernetes context

  • detail_level: "concise" (default) or "detailed"

  • format: "text" (default) or "json" - Output format for programmatic consumption

Example:

Get detailed status for the main-db cluster in production namespace

Note: Supports JSON format for structured output.

3. create_postgres_cluster

Create a new PostgreSQL cluster with high availability.

Parameters:

  • name (required): Cluster name

  • instances (default: 3): Number of PostgreSQL instances

  • storage_size (default: "10Gi"): Storage per instance

  • postgres_version (default: "16"): PostgreSQL version

  • storage_class (optional): Kubernetes storage class

  • wait (default: False): Wait for the cluster to become operational before returning

  • timeout (optional): Maximum time in seconds to wait (30-600 seconds). Defaults to 60 seconds per instance

  • namespace (optional): Target namespace. If not specified, uses the current namespace from your Kubernetes context

  • dry_run (default: False): Preview the cluster configuration without creating it

Example:

Create a new PostgreSQL cluster named 'app-db' in the production namespace with 5 instances and 100Gi storage

4. scale_postgres_cluster

Scale a cluster by changing the number of instances.

Parameters:

  • name (required): Cluster name

  • instances (required): New number of instances (1-10)

  • namespace (optional): Namespace of the cluster. If not specified, uses the current namespace from your Kubernetes context

Example:

Scale the app-db cluster in production to 5 instances

5. delete_postgres_cluster

Delete a PostgreSQL cluster and its associated resources.

Automatically cleans up:

  • The cluster resource itself

  • All associated role password secrets (using label selector cnpg.io/cluster={name})

Parameters:

  • name (required): Name of the cluster to delete

  • confirm_deletion (default: False): Must be explicitly set to true to confirm deletion

  • namespace (optional): Namespace where the cluster exists. If not specified, uses the current namespace from your Kubernetes context

Example:

Delete the old-test-cluster with confirmation

Warning: This is a DESTRUCTIVE operation that permanently removes the cluster and all its data. The tool will report how many secrets were cleaned up.

Role/User Management

6. list_postgres_roles

List all PostgreSQL roles/users managed in a cluster.

Parameters:

  • cluster_name (required): Name of the PostgreSQL cluster

  • namespace (optional): Namespace where the cluster exists. If not specified, uses the current namespace from your Kubernetes context

  • format: "text" (default) or "json" - Output format for programmatic consumption

Example:

List all roles in the main-db cluster

Note: Supports JSON format for structured output with role attributes.

7. create_postgres_role

Create a new PostgreSQL role/user in a cluster. Automatically generates a secure password and stores it in a Kubernetes secret.

Parameters:

  • cluster_name (required): Name of the PostgreSQL cluster

  • role_name (required): Name of the role to create

  • login (default: true): Allow role to log in

  • superuser (default: false): Grant superuser privileges

  • inherit (default: true): Inherit privileges from parent roles

  • createdb (default: false): Allow creating databases

  • createrole (default: false): Allow creating roles

  • replication (default: false): Allow streaming replication

  • namespace (optional): Namespace where the cluster exists

Example:

Create a new role 'app_user' in the main-db cluster with login and createdb privileges

8. update_postgres_role

Update attributes of an existing PostgreSQL role/user.

Parameters:

  • cluster_name (required): Name of the PostgreSQL cluster

  • role_name (required): Name of the role to update

  • login, superuser, inherit, createdb, createrole, replication (all optional): Attributes to update

  • password (optional): New password for the role

  • namespace (optional): Namespace where the cluster exists

Example:

Grant createdb privilege to app_user in the main-db cluster

9. delete_postgres_role

Delete a PostgreSQL role/user from a cluster. Also deletes the associated Kubernetes secret.

Parameters:

  • cluster_name (required): Name of the PostgreSQL cluster

  • role_name (required): Name of the role to delete

  • namespace (optional): Namespace where the cluster exists

Example:

Delete the old_user role from the main-db cluster

Database Management

10. list_postgres_databases

List all PostgreSQL databases managed by Database CRDs for a cluster.

Parameters:

  • cluster_name (required): Name of the PostgreSQL cluster

  • namespace (optional): Namespace where the cluster exists

  • format: "text" (default) or "json" - Output format for programmatic consumption

Example:

List all databases in the main-db cluster

Note: Supports JSON format for structured output with database details.

11. create_postgres_database

Create a new PostgreSQL database using CloudNativePG's Database CRD.

Parameters:

  • cluster_name (required): Name of the PostgreSQL cluster

  • database_name (required): Name of the database to create

  • owner (required): Name of the role that will own the database

  • reclaim_policy (default: "retain"): Policy for database deletion ("retain" or "delete")

  • namespace (optional): Namespace where the cluster exists

Example:

Create a new database 'app_data' owned by 'app_user' in the main-db cluster

12. delete_postgres_database

Delete a PostgreSQL database by removing its Database CRD.

Parameters:

  • cluster_name (required): Name of the PostgreSQL cluster

  • database_name (required): Name of the database to delete

  • namespace (optional): Namespace where the cluster exists

Example:

Delete the old_data database from the main-db cluster

Note: Whether the database is actually dropped from PostgreSQL depends on the databaseReclaimPolicy set when the database was created.

Architecture

Design Principles

This MCP server follows agent-centric design principles:

  1. Workflow-based tools: Each tool completes a meaningful workflow, not just a single API call

  2. Optimized for context: Responses are concise by default, with detailed mode available

  3. Actionable errors: Error messages suggest next steps

  4. Natural naming: Tool names reflect user intent, not just API endpoints

Transport Layer Architecture

The server is designed with transport-agnostic core logic, making it easy to add new transport modes without rewriting tool implementations:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ MCP Tool Layer β”‚ β”‚ (list_clusters, create_cluster, etc.) β”‚ β”‚ ↓ β”‚ β”‚ Core business logic is transport-agnostic β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ↓ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Transport Layer β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ stdio β”‚ β”‚ HTTP/SSE β”‚ β”‚ β”‚ β”‚ (current) β”‚ β”‚ (future) β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Why this matters:

  • All tool functions (decorated with @mcp.tool()) work with any transport

  • Adding HTTP transport only requires implementing run_http_transport()

  • No changes needed to business logic when switching transports

  • Can run both transports simultaneously if needed

To add HTTP/SSE transport later:

  1. Uncomment HTTP dependencies in requirements.txt

  2. Install: pip install mcp[sse] starlette uvicorn

  3. Implement the run_http_transport() function (skeleton already provided)

  4. Add authentication/authorization middleware

  5. Configure TLS for production

Components

  • Kubernetes Client: Uses kubernetes Python client for API access

  • CloudNativePG CRDs: Interacts with Custom Resource Definitions:

    • Cluster: Primary resource for PostgreSQL cluster management

    • Database: Declarative database creation and management (CNPG v1.23+)

  • Declarative Role Management: Manages PostgreSQL roles through the Cluster CRD's .spec.managed.roles field

  • Secret Management: Automatically creates and manages Kubernetes secrets for role passwords

  • Async operations: All I/O is async for better performance

  • Lazy initialization: Kubernetes clients are initialized on first use, allowing graceful startup

  • Error handling: Comprehensive error formatting with suggestions

Development

Adding New Tools

To add a new tool:

  1. Create a Pydantic model for input validation

  2. Implement the tool function with @mcp.tool() decorator

  3. Add comprehensive docstring following the format in existing tools

  4. Implement error handling with actionable messages

  5. Test thoroughly

Example skeleton:

class MyToolInput(BaseModel): """Input for my_tool.""" param1: str = Field(..., description="Description with examples") @mcp.tool() async def my_tool(param1: str) -> str: """ Tool description. Detailed explanation of what this tool does and when to use it. Args: param1: Parameter description with usage guidance Returns: Description of return value format Examples: - Example usage 1 - Example usage 2 Error Handling: - Common error scenarios and how to resolve them """ try: # Implementation result = await some_async_operation(param1) return format_response(result) except Exception as e: return format_error_message(e, "context description")

Testing

Run syntax check:

python -m py_compile cnpg_mcp_server.py

Test with a real Kubernetes cluster:

# In one terminal (use tmux to keep it running) python cnpg_mcp_server.py # In another terminal, test with MCP client or Claude Desktop

Implemented Features

  • Delete cluster tool with safety confirmations

  • PostgreSQL role/user management (list, create, update, delete)

  • PostgreSQL database management (list, create, delete)

  • Dry-run mode for cluster creation

  • Wait for cluster readiness with configurable timeout

  • Automatic namespace inference from Kubernetes context

  • Lazy Kubernetes client initialization

TODO: Upcoming Features

  • Backup management (list, create, restore)

  • Log retrieval from pods

  • SQL query execution (with safety guardrails)

  • Connection information retrieval (automatic secret decoding)

  • Monitoring and metrics integration

  • Certificate and secret management

  • Cluster configuration updates

  • Pooler management

Troubleshooting

"Permission denied" errors

Ensure your service account has the necessary RBAC permissions. Check:

kubectl auth can-i get clusters.postgresql.cnpg.io --as=system:serviceaccount:default:cnpg-mcp-server

"Connection refused" or "Cluster unreachable"

Verify kubectl connectivity:

kubectl cluster-info kubectl get nodes

"No module named 'mcp'"

Install dependencies:

pip install -r requirements.txt

Server hangs

This is expected behavior - the server waits for MCP requests over stdio. Run in background or use process manager.

Security Considerations

  1. RBAC: Apply principle of least privilege - only grant necessary permissions

    • Use cnpg-cloudnative-pg-view for read-only access

    • Use cnpg-cloudnative-pg-edit for cluster management

    • Grant additional permissions for secrets if using role management:

      • list secrets with label selector (for cleanup during cluster deletion)

      • create and delete secrets (for role management)

  2. Secrets: Never log or expose database credentials

    • Role passwords are automatically generated and stored in Kubernetes secrets

    • Secrets are labeled with cluster and role information for easy management

    • Secrets are named cnpg-{cluster}-user-{role} to avoid conflicts

    • Automatic cleanup: Secrets are automatically deleted when their cluster is deleted

  3. Input validation: All inputs are validated with Pydantic models

  4. Namespace isolation: Consider restricting to specific namespaces

  5. Audit logging: Enable Kubernetes audit logs for compliance

  6. Destructive operations: Cluster and database deletion require explicit confirmation

  7. Role privileges: Be cautious when granting superuser or replication privileges

  8. Database reclaim policy: Choose "retain" for production databases to prevent accidental data loss

Resources

License

[Your License Here]

Contributing

Contributions are welcome! Please:

  1. Follow the existing code style

  2. Add comprehensive docstrings

  3. Include error handling

  4. Test with real Kubernetes clusters

  5. Update README with new features

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/helxplatform/cnpg-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server