MCP OI-Wiki

by ShwStone

Integrations

  • Processes and returns OI-Wiki content in Markdown format, allowing AI to reference competitive programming documentation and algorithms directly

  • Utilizes Milvus Lite as a vector database to store and retrieve semantic vectors of OI-Wiki content, enabling semantic search capabilities for competitive programming knowledge

mcp-oi-wiki

让大模型拥有 OI-Wiki 的加成!

How does it work?

使用 Deepseek-V3 对 OI-wiki 当前的 462 个页面做摘要,将摘要嵌入为语义向量,建立向量数据库。

查询时,找到数据库中最接近的向量,返回对应的 wiki markdown。

Usage

确保你拥有 uv

首先,下载本仓库:

cd <path of MCP servers> git clone --recurse-submodules https://github.com/ShwStone/mcp-oi-wiki.git

然后打开你的 MCP 配置文件(mcpo 或 claude):

{ "mcpServers": { "oi-wiki": { "command": "uv", "args": [ "--directory", "<path of MCP servers>/mcp-oi-wiki", "run", "python", "main.py" ] } } }

Update

可以生成自己的 db/oi-wiki.db

将 Silicon flow API key 放在 api.key 文件中。

然后运行:

uv run script/request.py

批量推理页面下载摘要结果到 result.jsonl

最后运行:

uv run script/gendb.py

生成新的 db/oi-wiki.db

Thanks

You must be authenticated.

A
security – no known vulnerabilities
F
license - not found
A
quality - confirmed to work

Tools

Enhances large language models with competitive programming knowledge by leveraging OI-Wiki content through vector search, allowing models to retrieve relevant algorithms and techniques.

  1. How does it work?
    1. Usage
      1. Update
        1. Thanks

          Related MCP Servers

          • -
            security
            F
            license
            -
            quality
            Enables AI assistants to enhance their responses with relevant documentation through a semantic vector search, offering tools for managing and processing documentation efficiently.
            Last updated -
            62
            13
            TypeScript
          • -
            security
            A
            license
            -
            quality
            Provides RAG capabilities for semantic document search using Qdrant vector database and Ollama/OpenAI embeddings, allowing users to add, search, list, and delete documentation with metadata support.
            Last updated -
            5
            4
            TypeScript
            Apache 2.0
          • -
            security
            F
            license
            -
            quality
            A smart code retrieval tool based on Model Context Protocol that provides efficient and accurate code repository search capabilities for large language models.
            Last updated -
            Python
          • -
            security
            A
            license
            -
            quality
            Provides tools for retrieving and processing documentation through vector search, enabling AI assistants to augment their responses with relevant documentation context.
            Last updated -
            62
            TypeScript
            MIT License
            • Apple

          View all related MCP servers

          ID: 0r57rwrzxv