Skip to main content
Glama
ConechoAI

OpenAI WebSearch MCP Server

by ConechoAI

OpenAI WebSearch MCP Server 🔍

PyPI version Python 3.10+ MCP Compatible License: MIT

An advanced MCP server that provides intelligent web search capabilities using OpenAI's reasoning models. Perfect for AI assistants that need up-to-date information with smart reasoning capabilities.

✨ Features

  • 🧠 Reasoning Model Support: Full compatibility with OpenAI's latest reasoning models (gpt-5, gpt-5-mini, gpt-5-nano, o3, o4-mini)

  • ⚡ Smart Effort Control: Intelligent reasoning_effort defaults based on use case

  • 🔄 Multi-Mode Search: Fast iterations with gpt-5-mini or deep research with gpt-5

  • 🌍 Localized Results: Support for location-based search customization

  • 📝 Rich Descriptions: Complete parameter documentation for easy integration

  • 🔧 Flexible Configuration: Environment variable support for easy deployment

Related MCP server: MCP Google Server

🚀 Quick Start

One-Click Installation for Claude Desktop

OPENAI_API_KEY=sk-xxxx uvx --with openai-websearch-mcp openai-websearch-mcp-install

Replace sk-xxxx with your OpenAI API key from the OpenAI Platform.

⚙️ Configuration

Claude Desktop

Add to your claude_desktop_config.json:

{ "mcpServers": { "openai-websearch-mcp": { "command": "uvx", "args": ["openai-websearch-mcp"], "env": { "OPENAI_API_KEY": "your-api-key-here", "OPENAI_DEFAULT_MODEL": "gpt-5-mini" } } } }

Cursor

Add to your MCP settings in Cursor:

  1. Open Cursor Settings (Cmd/Ctrl + ,)

  2. Search for "MCP" or go to Extensions → MCP

  3. Add server configuration:

{ "mcpServers": { "openai-websearch-mcp": { "command": "uvx", "args": ["openai-websearch-mcp"], "env": { "OPENAI_API_KEY": "your-api-key-here", "OPENAI_DEFAULT_MODEL": "gpt-5-mini" } } } }

Claude Code

Claude Code automatically detects MCP servers configured for Claude Desktop. Use the same configuration as above for Claude Desktop.

Local Development

For local testing, use the absolute path to your virtual environment:

{ "mcpServers": { "openai-websearch-mcp": { "command": "/path/to/your/project/.venv/bin/python", "args": ["-m", "openai_websearch_mcp"], "env": { "OPENAI_API_KEY": "your-api-key-here", "OPENAI_DEFAULT_MODEL": "gpt-5-mini", "PYTHONPATH": "/path/to/your/project/src" } } } }

🛠️ Available Tools

Intelligent web search with reasoning model support.

Parameters

Parameter

Type

Description

Default

input

string

The search query or question to search for

Required

model

string

AI model to use. Supports gpt-4o, gpt-4o-mini, gpt-5, gpt-5-mini, gpt-5-nano, o3, o4-mini

gpt-5-mini

reasoning_effort

string

Reasoning effort level: low, medium, high, minimal

Smart default

type

string

Web search API version

web_search_preview

search_context_size

string

Context amount: low, medium, high

medium

user_location

object

Optional location for localized results

null

💬 Usage Examples

Once configured, simply ask your AI assistant to search for information using natural language:

"Search for the latest developments in AI reasoning models using openai_web_search"

Deep Research

"Use openai_web_search with gpt-5 and high reasoning effort to provide a comprehensive analysis of quantum computing breakthroughs"

"Search for local tech meetups in San Francisco this week using openai_web_search"

The AI assistant will automatically use the openai_web_search tool with appropriate parameters based on your request.

🤖 Model Selection Guide

Quick Multi-Round Searches 🚀

  • Recommended: gpt-5-mini with reasoning_effort: "low"

  • Use Case: Fast iterations, real-time information, multiple quick queries

  • Benefits: Lower latency, cost-effective for frequent searches

Deep Research 🔬

  • Recommended: gpt-5 with reasoning_effort: "medium" or "high"

  • Use Case: Comprehensive analysis, complex topics, detailed investigation

  • Benefits: Multi-round reasoned results, no need for agent iterations

Model Comparison

Model

Reasoning

Default Effort

Best For

gpt-4o

N/A

Standard search

gpt-4o-mini

N/A

Basic queries

gpt-5-mini

low

Fast iterations

gpt-5

medium

Deep research

gpt-5-nano

medium

Balanced approach

o3

medium

Advanced reasoning

o4-mini

medium

Efficient reasoning

📦 Installation

# Install and run directly uvx openai-websearch-mcp # Or install globally uvx install openai-websearch-mcp

Using pip

# Install from PyPI pip install openai-websearch-mcp # Run the server python -m openai_websearch_mcp

From Source

# Clone the repository git clone https://github.com/yourusername/openai-websearch-mcp.git cd openai-websearch-mcp # Install dependencies uv sync # Run in development mode uv run python -m openai_websearch_mcp

👩‍💻 Development

Setup Development Environment

# Clone and setup git clone https://github.com/yourusername/openai-websearch-mcp.git cd openai-websearch-mcp # Create virtual environment and install dependencies uv sync # Run tests uv run python -m pytest # Install in development mode uv pip install -e .

Environment Variables

Variable

Description

Default

OPENAI_API_KEY

Your OpenAI API key

Required

OPENAI_DEFAULT_MODEL

Default model to use

gpt-5-mini

🐛 Debugging

Using MCP Inspector

# For uvx installations npx @modelcontextprotocol/inspector uvx openai-websearch-mcp # For pip installations npx @modelcontextprotocol/inspector python -m openai_websearch_mcp

Common Issues

Issue: "Unsupported parameter: 'reasoning.effort'" Solution: This occurs when using non-reasoning models (gpt-4o, gpt-4o-mini) with reasoning_effort parameter. The server automatically handles this by only applying reasoning parameters to compatible models.

Issue: "No module named 'openai_websearch_mcp'" Solution: Ensure you've installed the package correctly and your Python path includes the package location.

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments


Co-Authored-By: Claude noreply@anthropic.com

One-click Deploy
A
security – no known vulnerabilities
A
license - permissive license
A
quality - confirmed to work

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ConechoAI/openai-websearch-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server