Skip to main content
Glama

Context Engineering MCP Platform

🧠 Context Engineering MCP Platform

English | 日本語 | Demo | Quick Start | Docs


🎯 The Problem We Solve

Every AI developer faces these challenges:

❌ Without Context Engineering

  • 💸 $1000s wasted on inefficient prompts
  • 🐌 3-5x slower response times
  • 📉 40% lower accuracy in outputs
  • 🔄 Endless copy-pasting of prompts
  • 😤 Frustrated users from poor AI responses

✅ With Context Engineering

  • 💰 52% cost reduction through optimization
  • 2x faster AI responses
  • 📈 92% quality score improvements
  • 🎯 78% template reuse rate
  • 😊 Happy users with consistent results

🌟 What is Context Engineering?

Context Engineering is the systematic approach to designing, managing, and optimizing the information provided to AI models. Think of it as DevOps for AI prompts - bringing engineering rigor to what has traditionally been ad-hoc prompt crafting.

Core Principles

  1. 📊 Measure Everything - Quality scores, token usage, response times
  2. 🔄 Optimize Continuously - AI-powered improvements on every interaction
  3. 📋 Standardize Templates - Reusable components for consistent results
  4. 🎯 Focus on Outcomes - Business metrics, not just technical metrics

🚀 Key Features That Set Us Apart

1. 🧪 AI-Powered Analysis Engine

# Traditional approach - manual review context = "You are an AI assistant. You help users. You are helpful..." # Developer: "Looks good to me!" 🤷 # Context Engineering approach - AI analysis analysis = await analyze_context(context) print(f"Quality Score: {analysis.quality_score}/100") print(f"Issues Found: {analysis.issues}") print(f"Recommendations: {analysis.recommendations}") # Output: # Quality Score: 65/100 # Issues Found: ['Redundant statements', 'Vague instructions'] # Recommendations: ['Combine role definition', 'Add specific examples']

Our AI analyzer evaluates:

  • Semantic Coherence: How well ideas flow together
  • Information Density: Token efficiency metrics
  • Clarity Score: Readability and understandability
  • Relevance Mapping: How well content matches intent

2. ⚡ Intelligent Optimization Algorithms

# Before optimization original_context = """ You are an AI assistant. You are helpful. You help users with their questions. When users ask questions, you provide helpful answers. You should be helpful and provide good answers to questions. """ # Tokens: 50, Quality: 60/100 # After optimization optimized_context = """ You are a helpful AI assistant that provides comprehensive, accurate answers to user questions. """ # Tokens: 15 (70% reduction!), Quality: 85/100

Optimization strategies:

  • 🎯 Token Reduction: Remove redundancy without losing meaning
  • 💎 Clarity Enhancement: Improve instruction precision
  • 🔗 Relevance Boosting: Prioritize important information
  • 📐 Structure Improvement: Logical flow optimization

3. 📋 Advanced Template Management

# Create a reusable template template = create_template( name="Customer Support Agent", template=""" You are a {company} support agent with {experience} of experience. Your responsibilities: - {primary_task} - {secondary_task} Communication style: {tone} Current context: {context} """, category="support", tags=["customer-service", "chatbot"] ) # Use it across different scenarios rendered = render_template(template, { "company": "TechCorp", "experience": "5 years", "primary_task": "Resolve technical issues", "secondary_task": "Ensure customer satisfaction", "tone": "Professional yet friendly", "context": "Black Friday sale period" })

Features:

  • 🤖 AI-Generated Templates: Describe your need, get a template
  • 📊 Usage Analytics: Track which templates work best
  • 🔄 Version Control: Roll back to previous versions
  • 🧪 A/B Testing: Compare template performance

4. 🌐 Multi-Modal Context Support

Handle complex, real-world scenarios:

# Create a multi-modal context context = create_multimodal_context( text="Analyze this product image and create a description", images=["product_photo.jpg", "dimension_diagram.png"], documents=["product_specs.pdf"], metadata={ "target_audience": "technical buyers", "tone": "professional", "length": "200-300 words" } ) # Automatic optimization for each modality optimized = await optimize_multimodal(context)

Supported formats:

  • 📝 Text: Markdown, plain text, code
  • 🖼️ Images: JPEG, PNG, WebP
  • 🎵 Audio: MP3, WAV (transcription)
  • 📹 Video: MP4 (frame extraction)
  • 📄 Documents: PDF, DOCX, XLSX

5. 🔌 Native MCP Integration

// Just add to your Claude Desktop config: { "mcpServers": { "context-engineering": { "command": "node", "args": ["./mcp-server/context_mcp_server.js"] } } }

Then use natural language in Claude:

  • "Optimize my chatbot's context for clarity"
  • "Create a template for code review"
  • "Analyze why my AI responses are slow"
  • "Compare these two prompt strategies"

15 powerful tools at your fingertips!

📊 Real-World Performance Metrics

Based on production usage across 1000+ contexts:

🎬 Live Demo

See it in action - Context Optimization

┌────────────────────────────────────────────────────┐ │ BEFORE OPTIMIZATION │ ├────────────────────────────────────────────────────┤ │ Tokens: 2,547 Quality: 65/100 ❌ │ │ Cost: $0.051 Speed: 3.2s │ │ │ │ Context: │ │ "You are an AI assistant. You are helpful. │ │ You should help users. When users ask you │ │ questions, you should answer them helpfully..." │ │ │ │ Issues: │ │ - High redundancy (42%) │ │ - Vague instructions │ │ - Poor structure │ └────────────────────────────────────────────────────┘ ⬇️ [🤖 AI OPTIMIZATION MAGIC] ⬇️ ┌────────────────────────────────────────────────────┐ │ AFTER OPTIMIZATION │ ├────────────────────────────────────────────────────┤ │ Tokens: 1,223 Quality: 92/100 ✅ │ │ Cost: $0.024 Speed: 1.8s │ │ │ │ Context: │ │ "You are a knowledgeable AI assistant providing │ │ accurate, comprehensive answers. Focus on: │ │ • Direct, actionable responses │ │ • Evidence-based information │ │ • Clear, structured explanations" │ │ │ │ Improvements: │ │ ✓ 52% token reduction │ │ ✓ Clear role definition │ │ ✓ Specific guidelines │ └────────────────────────────────────────────────────┘

Real-time Dashboard Preview

┌─────────────────────────────────────────────────────┐ │ Context Engineering Dashboard │ ├─────────────────────────────────────────────────────┤ │ │ │ Active Sessions: 24 Total Contexts: 1,847 │ │ Templates Used: 89 Optimizations: 3,201 │ │ │ │ ┌─────────────────┐ ┌─────────────────┐ │ │ │ Quality Scores │ │ Token Usage │ │ │ │ │ │ │ │ │ │ 92 ████████░ │ │ 45% ████░░░░ │ │ │ │ 87 ███████░░ │ │ │ │ │ │ 94 █████████ │ │ Saved: 2.3M │ │ │ └─────────────────┘ └─────────────────┘ │ │ │ │ Recent Optimizations: │ │ ├─ Customer Support Bot -47% tokens ✅ │ │ ├─ Code Review Assistant -52% tokens ✅ │ │ └─ Content Generator -38% tokens ✅ │ │ │ └─────────────────────────────────────────────────────┘

🏃 Quick Start

Get up and running in just 2 minutes:

Prerequisites

  • Python 3.10+ and Node.js 16+
  • Google Gemini API key (Get one free)

1️⃣ Clone and Configure (30 seconds)

# Clone the repository git clone https://github.com/ShunsukeHayashi/context_-engineering_MCP.git cd "context engineering_mcp_server" # Set up environment cp .env.example .env echo "GEMINI_API_KEY=your_key_here" >> .env

2️⃣ Install and Launch (90 seconds)

# Option A: Quick start script (Recommended) ./quickstart.sh # Option B: Manual setup # Terminal 1 - Context Engineering API cd context_engineering python -m venv venv source venv/bin/activate # Windows: venv\Scripts\activate pip install -r requirements.txt python context_api.py # Terminal 2 - MCP Server (for Claude Desktop) cd mcp-server npm install node context_mcp_server.js

3️⃣ Your First Optimization (30 seconds)

# Run the example python examples/quick_start.py

Or use the API directly:

# Create a session curl -X POST http://localhost:9001/api/sessions \ -H "Content-Type: application/json" \ -d '{"name": "My First Session"}' # Create and optimize a context # ... (see examples/quick_start.py for full flow)

🎉 That's it! You're now optimizing AI contexts like a pro!

📚 Use Cases & Examples

🤖 AI Agent Development

# Create a specialized AI agent agent_session = create_session("Customer Service Agent") window = create_context_window(agent_session, max_tokens=4096) # Add role-specific context add_context_element(window, { "content": "You are Emma, a senior customer service specialist...", "type": "system", "priority": 10 }) # Add company knowledge add_context_element(window, { "content": "Company policies: ...", "type": "system", "priority": 8 }) # Analyze and optimize analysis = analyze_context(window) if analysis.quality_score < 80: optimized = optimize_context(window, goals=["clarity", "relevance"])

Results: 40% faster response time, 85% customer satisfaction

💬 Chatbot Optimization

# Before: Generic chatbot old_prompt = "You are a chatbot. Answer questions." # After: Optimized with templates template = generate_template( purpose="Technical support chatbot for SaaS platform", examples=["User login issues", "API integration help"], constraints=["Max 2 paragraphs", "Include links to docs"] ) # Deploy optimized version optimized_bot = render_template(template, { "product": "CloudAPI Pro", "docs_url": "https://docs.cloudapi.com" })

Results: 60% reduction in escalations, 2x faster resolution

📝 Content Generation

# Create content generation templates blog_template = create_template( name="Technical Blog Post", template="""Write a {word_count}-word blog post about {topic}. Target audience: {audience} Tone: {tone} Include: {requirements} SEO keywords: {keywords} """, category="content" ) # Generate consistent content for topic in topics: content = generate_with_template(blog_template, { "topic": topic, "word_count": 1500, "audience": "developers", "tone": "informative yet engaging", "requirements": ["code examples", "best practices"], "keywords": ["API", "integration", "tutorial"] })

Results: 5x content output, consistent quality scores >90%

🔬 Research Assistant

# Multi-modal research context research_context = create_multimodal_context( text="Analyze market trends for electric vehicles", documents=["market_report_2024.pdf", "competitor_analysis.xlsx"], images=["sales_charts.png", "technology_roadmap.jpg"], metadata={ "focus_areas": ["battery technology", "charging infrastructure"], "output_format": "executive summary with recommendations" } ) # Optimize for comprehensive analysis optimized = optimize_multimodal(research_context, goals=["completeness", "actionable_insights"])

Results: 70% time savings, 95% accuracy in insights

🏗️ Architecture

Component Overview

  • 🔌 MCP Server: Native Claude Desktop integration with 15 specialized tools
  • 🧠 Analysis Engine: AI-powered context quality evaluation
  • ⚡ Optimization Engine: Multi-strategy context improvement
  • 📋 Template Manager: Reusable prompt components with versioning
  • 💾 Storage Layer: Efficient context and template persistence
  • 📊 Analytics: Real-time metrics and usage tracking

🛠️ Advanced Features

Automatic Context Optimization

# Let AI decide the best optimization strategy result = await auto_optimize_context(window_id) # AI analyzes and applies: # - Token reduction (if verbose) # - Clarity enhancement (if ambiguous) # - Structure improvement (if disorganized) # - Relevance boosting (if unfocused)

RAG Integration

# Combine retrieval with context engineering rag_context = create_rag_context( query="How to implement OAuth2?", documents=knowledge_base.search("OAuth2"), max_tokens=2000 ) # Automatic relevance ranking and summarization optimized_rag = optimize_rag_context(rag_context)

Workflow Automation

# Define context engineering workflows workflow = create_workflow( name="Daily Report Generator", steps=[ ("fetch_data", {"source": "analytics_api"}), ("create_context", {"template": "daily_report"}), ("optimize", {"goals": ["brevity", "clarity"]}), ("generate", {"model": "gpt-4"}) ] ) # Execute automatically schedule_workflow(workflow, cron="0 9 * * *")

📊 API Reference

Core Endpoints

Session Management
POST /api/sessions # Create new session GET /api/sessions # List all sessions GET /api/sessions/{id} # Get session details DELETE /api/sessions/{id} # Delete session
Context Windows
POST /api/sessions/{id}/windows # Create context window GET /api/contexts/{id} # Get context details POST /api/contexts/{id}/elements # Add context element DELETE /api/contexts/{id}/elements/{elem_id} # Remove element
Analysis & Optimization
POST /api/contexts/{id}/analyze # Analyze context quality POST /api/contexts/{id}/optimize # Optimize with goals POST /api/contexts/{id}/auto-optimize # AI-driven optimization GET /api/optimization/{task_id} # Check optimization status
Template Management
POST /api/templates # Create template POST /api/templates/generate # AI-generate template GET /api/templates # List templates GET /api/templates/{id} # Get template POST /api/templates/{id}/render # Render with variables PUT /api/templates/{id} # Update template DELETE /api/templates/{id} # Delete template

MCP Tools

// Context Engineering Tools - create_context_session(name, description) - create_context_window(session_id, max_tokens) - add_context_element(window_id, content, type, priority) - analyze_context(window_id) - optimize_context(window_id, goals) - auto_optimize_context(window_id) - get_context_stats() // Template Management Tools - create_prompt_template(name, template, category) - generate_prompt_template(purpose, examples) - list_prompt_templates(category, tags) - render_template(template_id, variables) // AI Guides Tools (Bonus) - list_ai_guides() - search_ai_guides(query) - search_guides_with_gemini(query) - analyze_guide(title)

🚀 Deployment

Docker Deployment

# Production build docker build -t context-engineering:latest . # Run with docker-compose docker-compose up -d # Scale horizontally docker-compose up -d --scale api=3

Cloud Deployment

AWS ECS
# Build and push to ECR aws ecr get-login-password | docker login --username AWS --password-stdin $ECR_URI docker build -t context-engineering . docker tag context-engineering:latest $ECR_URI/context-engineering:latest docker push $ECR_URI/context-engineering:latest # Deploy with CloudFormation aws cloudformation create-stack --stack-name context-engineering \ --template-body file://aws/ecs-stack.yaml
Google Cloud Run
# Build and deploy gcloud builds submit --tag gcr.io/$PROJECT_ID/context-engineering gcloud run deploy context-engineering \ --image gcr.io/$PROJECT_ID/context-engineering \ --platform managed \ --allow-unauthenticated
Kubernetes
# Apply manifests kubectl apply -f k8s/namespace.yaml kubectl apply -f k8s/deployment.yaml kubectl apply -f k8s/service.yaml kubectl apply -f k8s/ingress.yaml

Production Considerations

  • 🔒 Security: API key management, rate limiting
  • 📈 Scaling: Horizontal scaling for API servers
  • 💾 Persistence: PostgreSQL for production storage
  • 📊 Monitoring: Prometheus + Grafana integration
  • 🔄 CI/CD: GitHub Actions workflows included

🤝 Contributing

We love contributions! See CONTRIBUTING.md for guidelines.

Priority Areas

  • 🌍 Internationalization: More language support
  • 🧪 Testing: Increase coverage to 90%+
  • 📚 Documentation: More examples and tutorials
  • 🔌 Integrations: OpenAI, Anthropic, Cohere APIs
  • 🎨 UI/UX: Dashboard improvements

Development Setup

# Clone your fork git clone https://github.com/YOUR_USERNAME/context_-engineering_MCP.git # Install dev dependencies pip install -r requirements-dev.txt npm install --save-dev # Run tests pytest --cov=. --cov-report=html npm test # Format code black . npm run lint:fix

📈 Success Stories

"We reduced our GPT-4 costs by 60% while improving response quality. This platform paid for itself in the first week."
Sarah Chen, CTO at TechStartup

"Context Engineering transformed how we build AI features. What took days now takes hours."
Michael Rodriguez, AI Lead at Fortune 500

"The template system alone saved us 100+ engineering hours per month."
Emma Watson, Director of Engineering

🔮 Roadmap

Q1 2025

  • Cloud-native deployment options
  • Team collaboration features
  • Advanced caching strategies
  • GraphQL API support

Q2 2025

  • Visual context builder
  • A/B testing framework
  • Cost prediction models
  • Enterprise SSO

Q3 2025

  • Multi-tenant architecture
  • Compliance certifications
  • Advanced analytics
  • Mobile SDKs

📚 Resources

📄 License

MIT License - see LICENSE for details.

🙏 Acknowledgments

Built with ❤️ using:


⭐ Star us on GitHub to support the project!

-
security - not tested
A
license - permissive license
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

A development platform that helps AI developers optimize prompts through intelligent context management, providing tools for analysis, optimization, and template management to reduce costs and improve AI response quality.

  1. 🎯 The Problem We Solve
    1. ❌ Without Context Engineering
    2. ✅ With Context Engineering
  2. 🌟 What is Context Engineering?
    1. Core Principles
  3. 🚀 Key Features That Set Us Apart
    1. 1. 🧪 AI-Powered Analysis Engine
    2. 2. ⚡ Intelligent Optimization Algorithms
    3. 3. 📋 Advanced Template Management
    4. 4. 🌐 Multi-Modal Context Support
    5. 5. 🔌 Native MCP Integration
  4. 📊 Real-World Performance Metrics
    1. 🎬 Live Demo
      1. See it in action - Context Optimization
      2. Real-time Dashboard Preview
    2. 🏃 Quick Start
      1. Prerequisites
      2. 1️⃣ Clone and Configure (30 seconds)
      3. 2️⃣ Install and Launch (90 seconds)
      4. 3️⃣ Your First Optimization (30 seconds)
    3. 📚 Use Cases & Examples
      1. 🤖 AI Agent Development
      2. 💬 Chatbot Optimization
      3. 📝 Content Generation
      4. 🔬 Research Assistant
    4. 🏗️ Architecture
      1. Component Overview
    5. 🛠️ Advanced Features
      1. Automatic Context Optimization
      2. RAG Integration
      3. Workflow Automation
    6. 📊 API Reference
      1. Core Endpoints
      2. MCP Tools
    7. 🚀 Deployment
      1. Docker Deployment
      2. Cloud Deployment
      3. Production Considerations
    8. 🤝 Contributing
      1. Priority Areas
      2. Development Setup
    9. 📈 Success Stories
      1. 🔮 Roadmap
        1. Q1 2025
        2. Q2 2025
        3. Q3 2025
      2. 📚 Resources
        1. 📄 License
          1. 🙏 Acknowledgments
            1. ⭐ Star us on GitHub to support the project!

          Related MCP Servers

          • -
            security
            A
            license
            -
            quality
            Serves prompt templates through a standardized protocol for transforming basic user queries into optimized prompts for AI systems.
            Last updated -
            6
            Python
            Apache 2.0
          • A
            security
            A
            license
            A
            quality
            Provides intelligent context management for AI development sessions, allowing users to track token usage, manage conversation context, and seamlessly restore context when reaching token limits.
            Last updated -
            8
            1
            2
            TypeScript
            Apache 2.0
            • Linux
            • Apple
          • A
            security
            F
            license
            A
            quality
            A simple AI development tool that helps users interact with AI through natural language commands, offering 29 tools across thinking, memory, browser, code quality, planning, and time management capabilities.
            Last updated -
            31
            2
            TypeScript
          • -
            security
            F
            license
            -
            quality
            Intelligently analyzes codebases to enhance LLM prompts with relevant context, featuring adaptive context management and task detection to produce higher quality AI responses.
            Last updated -
            TypeScript

          View all related MCP servers

          MCP directory API

          We provide all the information about MCP servers via our MCP API.

          curl -X GET 'https://glama.ai/api/mcp/v1/servers/ShunsukeHayashi/context_engineering_MCP'

          If you have feedback or need assistance with the MCP directory API, please join our Discord server