Skip to main content
Glama

Context Engineering MCP Platform

CLAUDE.md8.39 kB
# CLAUDE.md This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository. ## Project Overview Context Engineering MCP Platform - A comprehensive AI-powered platform that transforms context management for AI applications. Originally an AI guides server, it has evolved into a complete Context Engineering system with: - **AI Guides Management**: Curated collection from OpenAI, Google, and Anthropic with Gemini-powered search - **Context Engineering**: Complete context lifecycle management with analysis, optimization, and templates - **MCP Integration**: Native Claude Desktop support with 15 powerful tools - **Real-time Dashboards**: WebSocket-powered visualization and monitoring ## System Architecture ``` context_engineering_mcp_server/ ├── main.py # AI Guides API server (port 8888) ├── gemini_service.py # Gemini AI integration service ├── context_engineering/ # Context Engineering system (port 9001) │ ├── context_models.py # Core data models │ ├── context_analyzer.py # AI-powered analysis engine │ ├── context_optimizer.py # Optimization algorithms │ ├── template_manager.py # Template management system │ └── context_api.py # FastAPI server ├── mcp-server/ # MCP server implementations │ ├── index.js # Basic AI guides MCP server │ └── context_mcp_server.js # Full platform MCP server └── examples/ # Usage examples and tutorials ``` ## Commands and Development Workflow ### Initial Setup ```bash # Clone repository git clone https://github.com/ShunsukeHayashi/context_-engineering_MCP.git cd "context engineering_mcp_server" # Configure environment cp .env.example .env # Edit .env to add GEMINI_API_KEY ``` ### Running the Platform #### 1. AI Guides API Server ```bash # Install dependencies pip install -r requirements.txt # Run server uvicorn main:app --host 0.0.0.0 --port 8888 --reload ``` #### 2. Context Engineering System ```bash cd context_engineering # Create virtual environment python -m venv context_env source context_env/bin/activate # Windows: context_env\Scripts\activate # Install and run pip install -r requirements.txt ./start_context_engineering.sh # Or directly: python context_api.py ``` #### 3. MCP Server ```bash cd mcp-server npm install node context_mcp_server.js ``` ### Docker Operations ```bash # Build image docker build -t context-engineering-platform . # Run with docker-compose docker-compose up -d # View logs docker-compose logs -f # Stop docker-compose down ``` ## API Endpoints Reference ### AI Guides API (Port 8888) #### Basic Endpoints - `GET /health` - Health check - `GET /guides` - List all guides - `GET /guides/search?query={keyword}` - Search guides - `GET /guides/{title}` - Get guide details - `GET /guides/{title}/download-url` - Get download URL #### Gemini-Enhanced Endpoints - `POST /guides/search/gemini` - Semantic search - `GET /guides/{title}/analyze` - Analyze guide - `POST /guides/analyze-url` - Analyze external URL - `POST /guides/compare` - Compare multiple guides ### Context Engineering API (Port 9001) #### Session Management - `POST /api/sessions` - Create session - `GET /api/sessions` - List sessions - `GET /api/sessions/{session_id}` - Get session #### Context Windows - `POST /api/sessions/{session_id}/windows` - Create window - `POST /api/contexts/{window_id}/elements` - Add element - `GET /api/contexts/{window_id}` - Get window - `POST /api/contexts/{window_id}/analyze` - Analyze context #### Optimization - `POST /api/contexts/{window_id}/optimize` - Optimize context - `POST /api/contexts/{window_id}/auto-optimize` - Auto-optimize - `GET /api/optimization/{task_id}` - Get task status #### Templates - `POST /api/templates` - Create template - `POST /api/templates/generate` - AI generate template - `GET /api/templates` - List templates - `POST /api/templates/{template_id}/render` - Render template #### System - `GET /api/stats` - System statistics - `WS /ws` - WebSocket connection ## MCP Tools (15 Available) ### Configuration Add to Claude Desktop config: ```json { "mcpServers": { "context-engineering": { "command": "node", "args": ["/path/to/mcp-server/context_mcp_server.js"] } } } ``` ### Available Tools 1. **AI Guides Tools** (4): list, search, semantic search, analyze 2. **Context Tools** (7): sessions, windows, elements, analysis, optimization 3. **Template Tools** (4): create, generate, list, render ## Key Technical Decisions ### Architecture Choices 1. **Modular Design**: Separate services for different functionalities 2. **AI Integration**: Gemini 2.0 Flash for all AI operations 3. **Async Everything**: Full async/await for performance 4. **Type Safety**: Type hints and Pydantic models throughout 5. **WebSocket Support**: Real-time updates for dashboards ### Optimization Strategies 1. **Token Reduction**: Up to 52% reduction while maintaining quality 2. **Multi-goal Optimization**: Clarity, relevance, structure 3. **Semantic Analysis**: AI-powered quality scoring 4. **Template Reuse**: 78% average reuse rate ### Security Considerations 1. **API Key Management**: Environment variables only 2. **Docker Security**: Non-root user execution 3. **Input Validation**: Pydantic models for all inputs 4. **Error Handling**: Comprehensive try-catch blocks ## Common Development Tasks ### Adding New Context Analysis Features ```python # In context_analyzer.py async def analyze_new_metric(self, window: ContextWindow) -> float: """Add new analysis metric""" # Implementation here pass ``` ### Creating New Optimization Strategy ```python # In context_optimizer.py async def _optimize_for_new_goal(self, window: ContextWindow) -> Dict[str, Any]: """New optimization strategy""" # Implementation here pass ``` ### Adding MCP Tool ```javascript // In context_mcp_server.js { name: 'new_tool_name', description: 'Tool description', inputSchema: { type: 'object', properties: { // Parameters } } } ``` ### Running Tests ```bash # Install test dependencies pip install pytest pytest-asyncio httpx # Run all tests pytest # Run with coverage pytest --cov=. # Run specific test pytest tests/test_context_analyzer.py -v ``` ## Performance Optimization Tips 1. **Caching**: Implement Redis for template caching 2. **Batch Operations**: Use bulk element addition 3. **Async Processing**: Leverage asyncio for parallel operations 4. **Token Estimation**: Pre-calculate before API calls 5. **Connection Pooling**: Reuse HTTP connections ## Environment Variables ### Required - `GEMINI_API_KEY`: Google Gemini API key ### Optional - `UVICORN_HOST`: API host (default: 0.0.0.0) - `UVICORN_PORT`: API port (default: 8888/9001) - `LOG_LEVEL`: Logging level (default: info) - `CONTEXT_API_URL`: Context API URL for MCP (default: http://localhost:9001) - `AI_GUIDES_API_URL`: Guides API URL for MCP (default: http://localhost:8888) ## Debugging Tips ### Check Service Status ```bash # AI Guides API curl http://localhost:8888/health # Context Engineering API curl http://localhost:9001/api/stats # MCP Server (check Claude Desktop) ``` ### Common Issues 1. **Port conflicts**: Change ports in .env 2. **API key errors**: Verify GEMINI_API_KEY 3. **MCP not working**: Restart Claude Desktop 4. **Optimization timeout**: Increase task timeout ### Logging ```python import logging logger = logging.getLogger(__name__) logger.info("Debug information here") ``` ## Contributing Guidelines 1. **Code Style**: Black for Python, ESLint for JS 2. **Type Hints**: Required for all functions 3. **Documentation**: Docstrings for all public methods 4. **Tests**: Maintain >80% coverage 5. **Commits**: Follow conventional commits ## Important Notes - Context windows have token limits (default 8192) - Optimization is compute-intensive (may take time) - Templates are cached for performance - WebSocket connections auto-reconnect - MCP tools work in stdio mode only - Gemini API has rate limits (60 RPM) ## Future Enhancements - [ ] Cloud deployment (AWS/GCP) - [ ] Team collaboration features - [ ] Advanced caching strategies - [ ] Multi-language support - [ ] Export/import contexts - [ ] A/B testing for templates

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ShunsukeHayashi/context_engineering_MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server