Skip to main content
Glama
aberemia24

Code Executor MCP Server

by aberemia24

Code Executor MCP

Stop hitting the 2-3 MCP server wall. One MCP to orchestrate them all - 98% token savings, unlimited tool access.

npm version Docker Pulls License: MIT

Why Use Code Executor MCP?

  • 98% Token Reduction - 141k → 1.6k tokens (load 1 executor vs 50+ tools)

  • Sandboxed Security - Isolated Deno/Python execution, no internet by default, audit logging

  • Type-Safe Wrappers - Auto-generated TypeScript/Python SDK with full IntelliSense

  • Progressive Disclosure - Tools loaded on-demand inside sandbox, not upfront in context

  • Zero Config Setup - Wizard auto-detects existing MCP servers from Claude Code/Cursor

  • Production Ready - 606 tests, 95%+ coverage, Docker support, rate limiting

The Problem

You can't use more than 2-3 MCP servers before context exhaustion kills you.

You're forced to choose: filesystem OR browser OR git OR AI tools. Never all of them.

The Solution

Disable all MCPs. Enable only code-executor-mcp.

# Before: 47 tools, 141k tokens mcp__filesystem__read_file mcp__filesystem__write_file mcp__git__commit mcp__browser__navigate ... 43 more tools # After: 2 tools, 1.6k tokens (98% reduction) run-typescript-code run-python-code

Inside the sandbox, access ANY MCP tool on-demand:

// Claude writes this automatically const file = await callMCPTool('mcp__filesystem__read_file', { path: '/src/app.ts' }); const review = await callMCPTool('mcp__zen__codereview', { code: file }); await callMCPTool('mcp__git__commit', { message: review.suggestions });

Result: Unlimited MCP access, zero context overhead.

How Progressive Disclosure Works

sequenceDiagram participant C as Claude/Cursor participant E as Code Executor participant M as Other MCPs Note over C: ❌ Traditional: Load 50+ tools (141k tokens) Note over C: ✅ Code Executor: Load 2 tools (1.6k tokens) C->>E: run-typescript-code rect rgb(240, 248, 255) Note right of E: Sandbox (on-demand discovery) E->>M: callMCPTool('mcp__filesystem__read_file') M-->>E: Return data end E-->>C: Return result

Traditional MCP exposes all 47 tools upfront (141k tokens). Code Executor exposes 2 tools with outputSchema (1.6k tokens), loading others on-demand inside the sandbox when needed.

Quick Start

Don't configure manually. Our wizard does everything:

npm install -g code-executor-mcp code-executor-mcp setup

What the wizard does:

  1. 🔍 Scans for existing MCP configs (Claude Code ~/.claude.json, Cursor ~/.cursor/mcp.json, project .mcp.json)

  2. ⚙️ Configures with smart defaults (or customize interactively)

  3. 🤖 NEW: Writes complete MCP configuration (sampling + security + sandbox + performance)

  4. 📦 Generates type-safe TypeScript/Python wrappers for autocomplete

  5. 📅 Optional: Sets up daily sync to keep wrappers updated

Complete Configuration (all written automatically):

  • AI Sampling: Multi-provider support (Anthropic, OpenAI, Gemini, Grok, Perplexity)

  • Security: Audit logging, content filtering, project restrictions

  • Sandbox: Deno/Python execution with timeouts

  • Performance: Rate limiting, schema caching, execution timeouts

Smart defaults (just press Enter):

  • Port: 3333 | Timeout: 120s | Rate limit: 60/min

  • Audit logs: ~/.code-executor/audit-logs/

  • Sampling: Disabled (enable optionally with API key)

Supported AI Tools: Claude Code and Cursor (more coming soon)

First-Run Detection: If you try to run code-executor-mcp without configuration:

❌ No MCP configuration found 📝 To configure code-executor-mcp, run: code-executor-mcp setup Configuration will be created at: ~/.claude.json

What are Wrappers?

The wizard generates TypeScript/Python wrapper functions for your MCP tools:

Before (manual):

const file = await callMCPTool('mcp__filesystem__read_file', { path: '/src/app.ts' });

After (wrapper):

import { filesystem } from './mcp-wrappers'; const file = await filesystem.readFile({ path: '/src/app.ts' });

Benefits:

  • ✅ Type-safe with full IntelliSense/autocomplete

  • ✅ Self-documenting JSDoc comments from schemas

  • ✅ No need to remember exact tool names

  • ✅ Matches actual MCP tool APIs (generated from schemas)

Keeping Wrappers Updated:

The wizard can set up daily sync (optional) to automatically regenerate wrappers:

  • macOS: launchd plist runs at 4-6 AM

  • Linux: systemd timer runs at 4-6 AM

  • Windows: Task Scheduler runs at 4-6 AM

Daily sync re-scans your AI tool configs and project config for new/removed MCP servers. You can also manually update anytime with code-executor-mcp setup.

Option 2: Manual Configuration

1. Install

npm install -g code-executor-mcp

2. Configure

IMPORTANT: Code-executor discovers and merges MCP servers from BOTH locations:

  • Global: ~/.claude.json (cross-project MCPs like voice-mode, personal tools)

  • Project: .mcp.json (team-shared MCPs in your project root)

Config Merging: Global MCPs + Project MCPs = All available (project overrides global for duplicate names)

Add to your project .mcp.json or global ~/.claude.json:

{ "mcpServers": { "code-executor": { "command": "npx", "args": ["-y", "code-executor-mcp"], "env": { "MCP_CONFIG_PATH": "/full/path/to/this/.mcp.json", "DENO_PATH": "/path/to/.deno/bin/deno" } }, "filesystem": { "command": "npx", "args": ["-y", "@modelcontextprotocol/server-filesystem", "/home/user"] }, "playwright": { "command": "npx", "args": ["-y", "@playwright/mcp", "--headless"] } } }

Configuration Guide:

  • MCP_CONFIG_PATH: Optional - points to project .mcp.json (still discovers global ~/.claude.json)

  • DENO_PATH: Run which deno to find it (required for TypeScript execution)

  • Global MCPs (~/.claude.json): Personal servers available across all projects

  • Project MCPs (.mcp.json): Team-shared servers in version control

  • Connection Flow: Claude Code → code-executor ONLY, then code-executor → all other MCPs

Quick Setup:

# Find Deno path which deno # Output: /home/user/.deno/bin/deno # Project config (team-shared) realpath .mcp.json # Output: /home/user/projects/myproject/.mcp.json # Global config (personal) ls ~/.claude.json # Output: /home/user/.claude.json # Code-executor automatically merges both!

Minimal (Python-only):

{ "mcpServers": { "code-executor": { "command": "npx", "args": ["-y", "code-executor-mcp"], "env": { "MCP_CONFIG_PATH": "/path/to/.mcp.json", "PYTHON_ENABLED": "true" } } } }

3. Use

Claude can now access any MCP tool through code execution:

// Claude writes this when you ask to "read package.json" const result = await callMCPTool('mcp__filesystem__read_file', { path: './package.json' }); console.log(result);

That's it. No configuration, no allowlists, no manual tool setup.

Real-World Example

Task: "Review auth.ts for security issues and commit fixes"

Without code-executor (impossible - hit context limit):

Can't enable: filesystem + git + zen codereview Pick 2, manually do the 3rd

With code-executor (single AI message):

// Read file const code = await callMCPTool('mcp__filesystem__read_file', { path: '/src/auth.ts' }); // Review with AI const review = await callMCPTool('mcp__zen__codereview', { step: 'Security audit', code: code, step_number: 1, total_steps: 1 }); // Apply fixes const fixed = review.suggestions.replace(/timing-attack/g, 'constant-time'); await callMCPTool('mcp__filesystem__write_file', { path: '/src/auth.ts', content: fixed }); // Commit await callMCPTool('mcp__git__commit', { message: 'fix: constant-time token comparison' }); console.log('Security fixes applied and committed');

All in ONE tool call. Variables persist, no context switching.

Features

Feature

Description

98% Token Savings

141k → 1.6k tokens (47 tools → 2 tools)

Unlimited MCPs

Access 6,490+ MCP servers without context limits

Multi-Step Workflows

Chain multiple MCP calls in one execution

Auto-Discovery

AI agents find tools on-demand (0 token cost)

Deep Validation

AJV schema validation with helpful error messages

Security

Sandboxed (Deno/Python), allowlists, audit logs, rate limiting

Production Ready

TypeScript, 606 tests, 95%+ coverage, Docker support

MCP Sampling (Beta) - LLM-in-the-Loop Execution

New in v1.0.0: Enable Claude to call itself during code execution for dynamic reasoning and analysis.

What is Sampling?

MCP Sampling allows TypeScript and Python code running in sandboxed environments to invoke Claude (via Anthropic's API) through a simple interface. Your code can now "ask Claude for help" mid-execution.

Use Cases:

  • Code Analysis: Read a file, ask Claude to analyze it for security issues

  • Multi-Step Reasoning: Have Claude break down complex tasks into steps

  • Data Processing: Process each file/record with Claude's intelligence

  • Interactive Debugging: Ask Claude to explain errors or suggest fixes

Quick Example

TypeScript:

// Enable sampling in your execution const result = await callMCPTool('mcp__code-executor__executeTypescript', { code: ` // Read a file const code = await callMCPTool('mcp__filesystem__read_file', { path: './auth.ts' }); // Ask Claude to analyze it const analysis = await llm.ask( 'Analyze this code for security vulnerabilities: ' + code ); console.log(analysis); `, enableSampling: true, // Enable sampling allowedTools: ['mcp__filesystem__read_file'] }); // Check sampling metrics console.log('Rounds:', result.samplingMetrics.totalRounds); console.log('Tokens:', result.samplingMetrics.totalTokens);

Python:

# Python example with sampling code = """ import json # Read data data = call_mcp_tool('mcp__filesystem__read_file', {'path': './data.json'}) # Ask Claude to summarize summary = await llm.ask(f'Summarize this data: {data}') print(summary) """ result = call_mcp_tool('mcp__code-executor__executePython', { 'code': code, 'enableSampling': True })

API Reference

TypeScript API:

  • llm.ask(prompt: string, options?) - Simple query, returns response text

  • llm.think({messages, model?, maxTokens?, systemPrompt?}) - Multi-turn conversation

Python API:

  • llm.ask(prompt: str, system_prompt='', max_tokens=1000) - Simple query

  • llm.think(messages, model='', max_tokens=1000, system_prompt='') - Multi-turn conversation

Security Controls

Sampling includes enterprise-grade security controls:

Control

Description

Rate Limiting

Max 10 rounds, 10,000 tokens per execution (configurable)

Content Filtering

Auto-redacts secrets (API keys, tokens) and PII (emails, SSNs)

System Prompt Allowlist

Only pre-approved prompts accepted (prevents prompt injection)

Bearer Token Auth

256-bit secure token per bridge session

Localhost Binding

Bridge server only accessible locally (no external access)

Audit Logging

All calls logged with SHA-256 hashes (no plaintext secrets)

Configuration

Enable Sampling:

Option 1 - Per-Execution (recommended):

{ enableSampling: true }

Option 2 - Environment Variable:

export CODE_EXECUTOR_SAMPLING_ENABLED=true export CODE_EXECUTOR_MAX_SAMPLING_ROUNDS=10 export CODE_EXECUTOR_MAX_SAMPLING_TOKENS=10000

Option 3 - Config File (~/.code-executor/config.json):

{ "sampling": { "enabled": true, "maxRoundsPerExecution": 10, "maxTokensPerExecution": 10000, "allowedSystemPrompts": [ "", "You are a helpful assistant", "You are a code analysis expert" ] } }

Hybrid Architecture

Code Executor automatically detects the best sampling method:

  1. MCP SDK Sampling (free) - If your MCP client supports sampling/createMessage

  2. Direct Anthropic API (paid) - Fallback if MCP sampling unavailable (requires ANTHROPIC_API_KEY)

⚠️ Claude Code Limitation (as of November 2025): Claude Code does not support MCP sampling yet (Issue #1785). When using Claude Code, sampling will fall back to Direct API mode (requires ANTHROPIC_API_KEY).

Compatible clients with MCP sampling:

  • ✅ VS Code (v0.20.0+)

  • ✅ GitHub Copilot

  • ❌ Claude Code (pending Issue #1785)

When Claude Code adds sampling support, no code changes are needed - it will automatically switch to free MCP sampling.

Documentation

See the comprehensive sampling guide: docs/sampling.md

Covers:

  • What/Why/How with architecture diagrams

  • Complete API reference for TypeScript & Python

  • Security model with threat matrix

  • Configuration guide (env vars, config file, per-execution)

  • Troubleshooting guide (8 common errors)

  • Performance benchmarks (<50ms bridge startup)

  • FAQ (15+ questions)

Security (Enterprise-Grade)

Code Executor doesn't just "run code." It secures it:

Feature

Implementation

Sandbox Isolation

Deno (TypeScript) with restricted permissions, Pyodide WebAssembly (Python)

File Access Control

Non-root user (UID 1001), read-only root FS, explicit project path allowlist

Network Policy

NO internet by default, explicit domain allowlist required

Path Validation

Symlink resolution, directory traversal protection

Audit Logging

Every execution logged to ~/.code-executor/audit.jsonl with timestamps

Rate Limiting

30 requests/min default (configurable per MCP)

Dangerous Pattern Detection

Blocks eval, exec, import, pickle.loads

Schema Validation

AJV deep validation before execution

SSRF Protection

Blocks AWS metadata, localhost, private IPs

Example: Block all internet except GitHub API:

{ "security": { "allowedDomains": ["api.github.com"], "allowedProjects": ["/home/user/projects"] } }

Sandbox Architecture:

  • Deno (TypeScript): V8 isolate, explicit permissions (--allow-read=/tmp), no shell access

  • Pyodide (Python): WebAssembly sandbox, virtual filesystem, network restricted to MCP proxy only

  • Docker (Optional): Non-root container, read-only root, minimal attack surface

See SECURITY.md for complete threat analysis and security model.

Advanced Usage

Allowlists (Optional Security)

Restrict which tools can be executed:

await callMCPTool('mcp__code-executor__run-typescript-code', { code: ` // This works await callMCPTool('mcp__filesystem__read_file', {...}); // This fails - not in allowlist await callMCPTool('mcp__git__push', {...}); `, allowedTools: ['mcp__filesystem__read_file'] });

Discovery Functions

AI agents can explore available tools:

// Find all tools const tools = await discoverMCPTools(); // Search for specific functionality const fileTools = await searchTools('file read write'); // Inspect schema const schema = await getToolSchema('mcp__filesystem__read_file');

Zero token cost - discovery functions hidden from AI agent's tool list.

MCP Sampling: LLM-in-the-Loop Execution

Enable AI to autonomously call other AIs inside sandboxed code for iterative problem-solving, multi-agent collaboration, and complex workflows.

Key Features:

  • Multi-Provider Support: Anthropic, OpenAI, Gemini, Grok, Perplexity

  • Hybrid Mode: Free MCP sampling with automatic fallback to paid API

  • Simple API: llm.ask(prompt) and llm.think(messages) helpers

  • Security: Rate limiting, content filtering, localhost-only bridge

Setup:

# 1. Create .env file cp .env.example .env # 2. Add API key echo "CODE_EXECUTOR_SAMPLING_ENABLED=true" >> .env echo "CODE_EXECUTOR_AI_PROVIDER=gemini" >> .env echo "GEMINI_API_KEY=your_key_here" >> .env # 3. Use wrapper script (loads .env before starting) # Update .mcp.json: { "code-executor": { "command": "/path/to/start-with-env.sh" } }

See SAMPLING_SETUP.md for complete setup guide.

Basic Usage:

// Simple question const answer = await llm.ask('What is 2+2?'); console.log(answer); // "4" // Multi-turn reasoning const analysis = await llm.think([ { role: 'system', content: 'You are a code reviewer' }, { role: 'user', content: 'Review this code: ...' } ]);

Advanced Example - Multi-Agent Code Review:

5 AI agents collaborate to review, secure, refactor, test, and document code:

// Agent 1: Code Reviewer const review = await llm.ask('Review this code and list 5 issues...'); // Agent 2: Security Analyst const security = await llm.ask('Analyze for vulnerabilities...'); // Agent 3: Refactoring Expert const refactored = await llm.ask('Refactor using ES6+...'); // Agent 4: Test Generator const tests = await llm.ask('Generate 3 Vitest test cases...'); // Agent 5: Documentation Writer const docs = await llm.ask('Write JSDoc comments...');

Real-World Results:

  • 5 AI agents, 10 seconds, ~2,600 tokens

  • Complete code transformation: review → secure → refactor → test → document

  • See examples/multi-agent-code-review.ts for full working example

Use Cases:

  • 🤖 Multi-agent systems (code review, planning, execution)

  • 🔄 Iterative refinement (generate → validate → improve loop)

  • 🧪 Autonomous testing (generate tests, run them, fix failures)

  • 📚 Auto-documentation (analyze code, write docs, validate examples)

Multi-Action Workflows

Complex automation in a single tool call:

// Launch browser → navigate → interact → extract await callMCPTool('mcp__code-executor__run-typescript-code', { code: ` await callMCPTool('mcp__playwright__launch', { headless: false }); await callMCPTool('mcp__playwright__navigate', { url: 'https://example.com' }); const title = await callMCPTool('mcp__playwright__evaluate', { script: 'document.title' }); console.log('Page title:', title); `, allowedTools: ['mcp__playwright__*'] });

State persists across calls - no context switching.

Python Execution (Pyodide WebAssembly)

Secure Python execution with Pyodide sandbox:

Enable Python:

# Set environment variable (REQUIRED) export PYTHON_SANDBOX_READY=true # Enable in config # .code-executor.json { "executors": { "python": { "enabled": true } } }

Example - Python with MCP tools:

import asyncio async def main(): # Discover available tools tools = await discover_mcp_tools() print(f'Found {len(tools)} tools') # Call MCP tool to read file content = await call_mcp_tool('mcp__filesystem__read_file', { 'path': '/tmp/data.json' }) print(f'File content: {content}') # Process data import json data = json.loads(content) result = [x * 2 for x in data['numbers']] print(f'Processed: {result}') asyncio.run(main())

Security guarantees:

  • ✅ WebAssembly sandbox (same security as Deno)

  • ✅ Virtual filesystem (no host file access)

  • ✅ Network restricted to authenticated MCP proxy

  • ✅ No subprocess spawning

  • ✅ Memory limited by V8 heap

Limitations:

  • Pure Python only (no native C extensions unless WASM-compiled)

  • ~2-3s first load (Pyodide npm package), <100ms cached

  • No multiprocessing/threading (use async/await)

  • 10-30% slower than native Python (WASM overhead acceptable for security)

See SECURITY.md for complete security model.

Installation Options

npm install -g code-executor-mcp code-executor-mcp

Docker (Production)

Quick Start:

docker pull aberemia24/code-executor-mcp:latest docker run -p 3333:3333 aberemia24/code-executor-mcp:latest

With docker-compose (Recommended):

# 1. Copy example configuration cp docker-compose.example.yml docker-compose.yml # 2. Edit docker-compose.yml to add your API keys (optional) # - Set CODE_EXECUTOR_SAMPLING_ENABLED="true" # - Set your provider: CODE_EXECUTOR_AI_PROVIDER="gemini" # - Add API key: GEMINI_API_KEY="your-key-here" # 3. Start the service docker-compose up -d # 4. View logs docker-compose logs -f

First-Run Auto-Configuration: Docker deployment automatically generates complete MCP configuration from environment variables on first run:

  • ✅ All environment variables → comprehensive config

  • ✅ Includes sampling, security, sandbox, and performance settings

  • ✅ Config saved to /app/config/.mcp.json

  • ✅ Persistent across container restarts (use volume mount)

See DOCKER_TESTING.md for security details and docker-compose.example.yml for all available configuration options.

Local Development

git clone https://github.com/aberemia24/code-executor-MCP.git cd code-executor-mcp npm install && npm run build npm run server

Configuration

Complete Example (.mcp.json):

{ "mcpServers": { "code-executor": { "command": "npx", "args": ["-y", "code-executor-mcp"], "env": { "MCP_CONFIG_PATH": "/absolute/path/to/.mcp.json", "DENO_PATH": "/home/user/.deno/bin/deno", "ENABLE_AUDIT_LOG": "true", "AUDIT_LOG_PATH": "/home/user/.code-executor/audit.log", "ALLOWED_PROJECTS": "/home/user/projects:/tmp" } }, "filesystem": { "command": "npx", "args": ["-y", "@modelcontextprotocol/server-filesystem", "/home/user"] }, "zen": { "command": "uvx", "args": ["--from", "git+https://github.com/zen-mcp.git", "zen-mcp-server"], "env": { "GEMINI_API_KEY": "your-key-here" } } } }

Environment Variables:

Variable

Required

Description

Example

MCP_CONFIG_PATH

⚠️ Optional

Explicit path to project .mcp.json

/home/user/projects/myproject/.mcp.json

DENO_PATH

✅ For TypeScript

Path to Deno binary

/home/user/.deno/bin/deno

ENABLE_AUDIT_LOG

⚠️ Recommended

Enable security audit logging

true

AUDIT_LOG_PATH

No

Custom audit log location

/var/log/code-executor/audit.log

ALLOWED_PROJECTS

⚠️ Recommended

Restrict file access

/home/user/projects:/tmp

PYTHON_ENABLED

No

Enable Python executor

true (default)

Security Note: Store API keys in environment variables, not directly in config files.

Multi-Provider AI Sampling Configuration

NEW: Support for 5 AI providers (Anthropic, OpenAI, Gemini, Grok, Perplexity) with automatic provider-specific model selection.

Quick Setup:

# 1. Copy example config cp .env.example .env # 2. Edit .env and add your API key CODE_EXECUTOR_SAMPLING_ENABLED=true CODE_EXECUTOR_AI_PROVIDER=gemini # cheapest option! GEMINI_API_KEY=your-key-here # 3. Start server npm start

Provider Comparison (January 2025):

Provider

Default Model

Cost (Input/Output per MTok)

Best For

Gemini

gemini-2.5-flash-lite

$0.10 / $0.40

Cheapest + FREE tier

Grok

grok-4-1-fast-non-reasoning

$0.20 / $0.50

2M context, fast

OpenAI

gpt-4o-mini

$0.15 / $0.60

Popular, reliable

Perplexity

sonar

$1.00 / $1.00

Real-time search

Anthropic

claude-haiku-4-5-20251001

$1.00 / $5.00

Premium quality

Configuration Options: See .env.example for full list of sampling configuration options including:

  • API keys for all providers

  • Model allowlists

  • Rate limiting & quotas

  • Content filtering

  • System prompt controls

Auto-discovery (NEW in v0.7.3): Code-executor automatically discovers and merges:

  • ~/.claude.json (global/personal MCPs)

  • .mcp.json (project MCPs)

  • MCP_CONFIG_PATH if set (explicit override, still merges with global)

No configuration needed - just add MCPs to either location and code-executor finds them all!

TypeScript Support

Full type definitions included:

import { MCPClientPool, executeTypescript, type ToolSchema } from 'code-executor-mcp'; const pool = new MCPClientPool(); await pool.initialize('/path/to/.mcp.json'); const result = await executeTypescript({ code: `const tools = await discoverMCPTools(); console.log(tools.length);`, allowedTools: ['mcp__*'], timeoutMs: 30000 });

Performance

Metric

Value

Token savings

98% (141k → 1.6k)

Tool discovery

<5ms (cached), 50-100ms (first call)

Validation

<1ms per tool call

Sandbox startup

~200ms (Deno), ~2-3s first/~100ms cached (Pyodide)

Test coverage

606 tests, 95%+ security, 90%+ overall

Documentation

FAQ

Q: Do I need to configure each MCP server? A: No. Code-executor auto-discovers MCPs from ~/.claude.json (global) AND .mcp.json (project). Just add MCPs to either location.

Q: How does global + project config merging work? A: Code-executor finds and merges both:

  • Global (~/.claude.json): Personal MCPs available everywhere

  • Project (.mcp.json): Team MCPs in version control

  • Result: All MCPs available, project configs override global for duplicate names

Q: How does validation work? A: AJV validates all tool calls against live schemas. On error, you get a detailed message showing expected parameters.

Q: What about Python support? A: Full Python sandbox via Pyodide WebAssembly. Requires PYTHON_SANDBOX_READY=true environment variable. Same security model as Deno (WASM isolation, virtual FS, network restricted). Pure Python only - no native C extensions unless WASM-compiled. See SECURITY.md for details.

Q: Can I use this in production? A: Yes. 606 tests, 95%+ coverage, Docker support, audit logging, rate limiting.

Q: Does this work with Claude Code only? A: Built for Claude Code. Untested on other MCP clients, but should work per MCP spec.

Contributing

Contributions welcome! See CONTRIBUTING.md for guidelines.

Code Quality Standards:

  • ✅ TypeScript strict mode

  • ✅ 90%+ test coverage on business logic

  • ✅ ESLint + Prettier

  • ✅ All PRs require passing tests

License

MIT - See LICENSE


Built with Claude Code | Based on Anthropic's Code Execution with MCP

Star History

Star History Chart

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aberemia24/code-executor-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server