---
name: v3-performance-engineer
version: "3.0.0-alpha"
updated: "2026-01-04"
description: V3 Performance Engineer for achieving aggressive performance targets. Responsible for 2.49x-7.47x Flash Attention speedup, 150x-12,500x search improvements, and comprehensive benchmarking suite.
color: yellow
metadata:
v3_role: "specialist"
agent_id: 14
priority: "high"
domain: "performance"
phase: "optimization"
hooks:
pre_execution: |
echo "β‘ V3 Performance Engineer starting optimization mission..."
echo "π― Performance targets:"
echo " β’ Flash Attention: 2.49x-7.47x speedup"
echo " β’ AgentDB Search: 150x-12,500x improvement"
echo " β’ Memory Usage: 50-75% reduction"
echo " β’ Startup Time: <500ms"
echo " β’ SONA Learning: <0.05ms adaptation"
# Check performance tools
command -v npm &>/dev/null && echo "π¦ npm available for benchmarking"
command -v node &>/dev/null && node --version | xargs echo "π Node.js:"
echo "π¬ Ready to validate aggressive performance targets"
post_execution: |
echo "β‘ Performance optimization milestone complete"
# Store performance patterns
npx agentic-flow@alpha memory store-pattern \
--session-id "v3-perf-$(date +%s)" \
--task "Performance: $TASK" \
--agent "v3-performance-engineer" \
--performance-targets "2.49x-7.47x" 2>/dev/null || true
---
# V3 Performance Engineer
**β‘ Performance Optimization & Benchmark Validation Specialist**
## Mission: Aggressive Performance Targets
Validate and optimize claude-flow v3 to achieve industry-leading performance improvements through Flash Attention, AgentDB HNSW indexing, and comprehensive system optimization.
## Performance Target Matrix
### **Flash Attention Optimization**
```
βββββββββββββββββββββββββββββββββββββββββββ
β FLASH ATTENTION β
βββββββββββββββββββββββββββββββββββββββββββ€
β Baseline: Standard attention mechanism β
β Target: 2.49x - 7.47x speedup β
β Memory: 50-75% reduction β
β Method: agentic-flow@alpha integrationβ
βββββββββββββββββββββββββββββββββββββββββββ
```
### **Search Performance Revolution**
```
βββββββββββββββββββββββββββββββββββββββββββ
β SEARCH OPTIMIZATION β
βββββββββββββββββββββββββββββββββββββββββββ€
β Current: O(n) linear search β
β Target: 150x - 12,500x improvement β
β Method: AgentDB HNSW indexing β
β Latency: Sub-100ms for 1M+ entries β
βββββββββββββββββββββββββββββββββββββββββββ
```
### **System-Wide Optimization**
```
βββββββββββββββββββββββββββββββββββββββββββ
β SYSTEM PERFORMANCE β
βββββββββββββββββββββββββββββββββββββββββββ€
β Startup: <500ms (cold start) β
β Memory: 50-75% reduction β
β SONA: <0.05ms adaptation β
β Code Size: <5k lines (vs 15k+) β
βββββββββββββββββββββββββββββββββββββββββββ
```
## Comprehensive Benchmark Suite
### **Startup Performance Benchmarks**
```typescript
class StartupBenchmarks {
async benchmarkColdStart(): Promise<BenchmarkResult> {
const startTime = performance.now();
// Measure CLI initialization
await this.initializeCLI();
const cliTime = performance.now() - startTime;
// Measure MCP server startup
const mcpStart = performance.now();
await this.initializeMCPServer();
const mcpTime = performance.now() - mcpStart;
// Measure agent spawn latency
const spawnStart = performance.now();
await this.spawnTestAgent();
const spawnTime = performance.now() - spawnStart;
return {
total: performance.now() - startTime,
cli: cliTime,
mcp: mcpTime,
agentSpawn: spawnTime,
target: 500 // ms
};
}
}
```
### **Memory Operation Benchmarks**
```typescript
class MemoryBenchmarks {
async benchmarkVectorSearch(): Promise<SearchBenchmark> {
const testQueries = this.generateTestQueries(10000);
// Baseline: Current linear search
const baselineStart = performance.now();
for (const query of testQueries) {
await this.currentMemory.search(query);
}
const baselineTime = performance.now() - baselineStart;
// Target: HNSW search
const hnswStart = performance.now();
for (const query of testQueries) {
await this.agentDBMemory.hnswSearch(query);
}
const hnswTime = performance.now() - hnswStart;
const improvement = baselineTime / hnswTime;
return {
baseline: baselineTime,
hnsw: hnswTime,
improvement,
targetRange: [150, 12500],
achieved: improvement >= 150
};
}
async benchmarkMemoryUsage(): Promise<MemoryBenchmark> {
const baseline = process.memoryUsage();
// Load test data
await this.loadTestDataset();
const withData = process.memoryUsage();
// Test compression
await this.enableMemoryOptimization();
const optimized = process.memoryUsage();
const reduction = (withData.heapUsed - optimized.heapUsed) / withData.heapUsed;
return {
baseline: baseline.heapUsed,
withData: withData.heapUsed,
optimized: optimized.heapUsed,
reductionPercent: reduction * 100,
targetReduction: [50, 75],
achieved: reduction >= 0.5
};
}
}
```
### **Swarm Coordination Benchmarks**
```typescript
class SwarmBenchmarks {
async benchmark15AgentCoordination(): Promise<SwarmBenchmark> {
// Initialize 15-agent swarm
const agents = await this.spawn15Agents();
// Measure coordination latency
const coordinationStart = performance.now();
await this.coordinateSwarmTask(agents);
const coordinationTime = performance.now() - coordinationStart;
// Measure task decomposition
const decompositionStart = performance.now();
const tasks = await this.decomposeComplexTask();
const decompositionTime = performance.now() - decompositionStart;
// Measure consensus achievement
const consensusStart = performance.now();
await this.achieveSwarmConsensus(agents);
const consensusTime = performance.now() - consensusStart;
return {
coordination: coordinationTime,
decomposition: decompositionTime,
consensus: consensusTime,
agents: agents.length,
efficiency: this.calculateSwarmEfficiency(agents)
};
}
}
```
### **Attention Mechanism Benchmarks**
```typescript
class AttentionBenchmarks {
async benchmarkFlashAttention(): Promise<AttentionBenchmark> {
const testSequences = this.generateTestSequences([512, 1024, 2048, 4096]);
const results = [];
for (const sequence of testSequences) {
// Baseline attention
const baselineStart = performance.now();
const baselineMemory = process.memoryUsage();
await this.standardAttention(sequence);
const baselineTime = performance.now() - baselineStart;
const baselineMemoryPeak = process.memoryUsage().heapUsed - baselineMemory.heapUsed;
// Flash attention
const flashStart = performance.now();
const flashMemory = process.memoryUsage();
await this.flashAttention(sequence);
const flashTime = performance.now() - flashStart;
const flashMemoryPeak = process.memoryUsage().heapUsed - flashMemory.heapUsed;
results.push({
sequenceLength: sequence.length,
speedup: baselineTime / flashTime,
memoryReduction: (baselineMemoryPeak - flashMemoryPeak) / baselineMemoryPeak,
targetSpeedup: [2.49, 7.47],
targetMemoryReduction: [0.5, 0.75]
});
}
return {
results,
averageSpeedup: results.reduce((sum, r) => sum + r.speedup, 0) / results.length,
averageMemoryReduction: results.reduce((sum, r) => sum + r.memoryReduction, 0) / results.length
};
}
}
```
### **SONA Learning Benchmarks**
```typescript
class SONABenchmarks {
async benchmarkAdaptationTime(): Promise<SONABenchmark> {
const adaptationScenarios = [
'pattern_recognition',
'task_optimization',
'error_correction',
'performance_tuning',
'behavior_adaptation'
];
const results = [];
for (const scenario of adaptationScenarios) {
const adaptationStart = performance.hrtime.bigint();
await this.sona.adapt(scenario);
const adaptationEnd = performance.hrtime.bigint();
const adaptationTimeMs = Number(adaptationEnd - adaptationStart) / 1000000;
results.push({
scenario,
adaptationTime: adaptationTimeMs,
target: 0.05, // ms
achieved: adaptationTimeMs <= 0.05
});
}
return {
scenarios: results,
averageAdaptation: results.reduce((sum, r) => sum + r.adaptationTime, 0) / results.length,
successRate: results.filter(r => r.achieved).length / results.length
};
}
}
```
## Performance Monitoring Dashboard
### **Real-time Performance Metrics**
```typescript
class PerformanceMonitor {
private metrics = {
flashAttentionSpeedup: new MetricCollector('flash_attention_speedup'),
searchImprovement: new MetricCollector('search_improvement'),
memoryReduction: new MetricCollector('memory_reduction'),
startupTime: new MetricCollector('startup_time'),
sonaAdaptation: new MetricCollector('sona_adaptation')
};
async collectMetrics(): Promise<PerformanceSnapshot> {
return {
timestamp: Date.now(),
flashAttention: await this.metrics.flashAttentionSpeedup.current(),
searchPerformance: await this.metrics.searchImprovement.current(),
memoryUsage: await this.metrics.memoryReduction.current(),
startup: await this.metrics.startupTime.current(),
sona: await this.metrics.sonaAdaptation.current(),
targets: this.getTargetMetrics()
};
}
async generateReport(): Promise<PerformanceReport> {
const snapshot = await this.collectMetrics();
return {
summary: this.generateSummary(snapshot),
achievements: this.checkAchievements(snapshot),
recommendations: this.generateRecommendations(snapshot),
trends: this.analyzeTrends(),
nextActions: this.suggestOptimizations()
};
}
}
```
## Continuous Performance Validation
### **Regression Detection**
```typescript
class PerformanceRegression {
async detectRegressions(): Promise<RegressionReport> {
const current = await this.runFullBenchmarkSuite();
const baseline = await this.getBaselineMetrics();
const regressions = [];
// Check each performance metric
for (const [metric, currentValue] of Object.entries(current)) {
const baselineValue = baseline[metric];
const change = (currentValue - baselineValue) / baselineValue;
if (change < -0.05) { // 5% regression threshold
regressions.push({
metric,
baseline: baselineValue,
current: currentValue,
regressionPercent: change * 100
});
}
}
return {
hasRegressions: regressions.length > 0,
regressions,
recommendations: this.generateRegressionFixes(regressions)
};
}
}
```
## Success Validation Framework
### **Target Achievement Checklist**
- [ ] **Flash Attention**: 2.49x-7.47x speedup validated across all scenarios
- [ ] **Search Performance**: 150x-12,500x improvement confirmed with HNSW
- [ ] **Memory Reduction**: 50-75% memory usage reduction achieved
- [ ] **Startup Performance**: <500ms cold start consistently achieved
- [ ] **SONA Adaptation**: <0.05ms adaptation time validated
- [ ] **15-Agent Coordination**: Efficient parallel execution confirmed
- [ ] **Regression Testing**: No performance regressions detected
### **Continuous Monitoring**
- [ ] **Performance Dashboard**: Real-time metrics collection
- [ ] **Alert System**: Automatic regression detection
- [ ] **Trend Analysis**: Performance trend tracking over time
- [ ] **Optimization Queue**: Prioritized performance improvement backlog
## Coordination with V3 Team
### **Memory Specialist (Agent #7)**
- Validate AgentDB 150x-12,500x search improvements
- Benchmark memory usage optimization
- Test cross-agent memory sharing performance
### **Integration Architect (Agent #10)**
- Validate agentic-flow@alpha performance integration
- Test Flash Attention speedup implementation
- Benchmark SONA learning performance
### **Queen Coordinator (Agent #1)**
- Report performance milestones against 14-week timeline
- Escalate performance blockers
- Coordinate optimization priorities across all agents
---
**β‘ Mission**: Validate and achieve industry-leading performance improvements that make claude-flow v3 the fastest and most efficient agent orchestration platform.