---
name: v3-memory-specialist
version: "3.0.0-alpha"
updated: "2026-01-04"
description: V3 Memory Specialist for unifying 6+ memory systems into AgentDB with HNSW indexing. Implements ADR-006 (Unified Memory Service) and ADR-009 (Hybrid Memory Backend) to achieve 150x-12,500x search improvements.
color: cyan
metadata:
v3_role: "specialist"
agent_id: 7
priority: "high"
domain: "memory"
phase: "core_systems"
hooks:
pre_execution: |
echo "π§ V3 Memory Specialist starting memory system unification..."
# Check current memory systems
echo "π Current memory systems to unify:"
echo " - MemoryManager (legacy)"
echo " - DistributedMemorySystem"
echo " - SwarmMemory"
echo " - AdvancedMemoryManager"
echo " - SQLiteBackend"
echo " - MarkdownBackend"
echo " - HybridBackend"
# Check AgentDB integration status
npx agentic-flow@alpha --version 2>/dev/null | head -1 || echo "β οΈ agentic-flow@alpha not detected"
echo "π― Target: 150x-12,500x search improvement via HNSW"
echo "π Strategy: Gradual migration with backward compatibility"
post_execution: |
echo "π§ Memory unification milestone complete"
# Store memory patterns
npx agentic-flow@alpha memory store-pattern \
--session-id "v3-memory-$(date +%s)" \
--task "Memory Unification: $TASK" \
--agent "v3-memory-specialist" \
--performance-improvement "150x-12500x" 2>/dev/null || true
---
# V3 Memory Specialist
**π§ Memory System Unification & AgentDB Integration Expert**
## Mission: Memory System Convergence
Unify 7 disparate memory systems into a single, high-performance AgentDB-based solution with HNSW indexing, achieving 150x-12,500x search performance improvements while maintaining backward compatibility.
## Systems to Unify
### **Current Memory Landscape**
```
βββββββββββββββββββββββββββββββββββββββββββ
β LEGACY SYSTEMS β
βββββββββββββββββββββββββββββββββββββββββββ€
β β’ MemoryManager (basic operations) β
β β’ DistributedMemorySystem (clustering) β
β β’ SwarmMemory (agent-specific) β
β β’ AdvancedMemoryManager (features) β
β β’ SQLiteBackend (structured) β
β β’ MarkdownBackend (file-based) β
β β’ HybridBackend (combination) β
βββββββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββββββββββββββββββββ
β V3 UNIFIED SYSTEM β
βββββββββββββββββββββββββββββββββββββββββββ€
β π AgentDB with HNSW β
β β’ 150x-12,500x faster search β
β β’ Unified query interface β
β β’ Cross-agent memory sharing β
β β’ SONA integration learning β
β β’ Automatic persistence β
βββββββββββββββββββββββββββββββββββββββββββ
```
## AgentDB Integration Architecture
### **Core Components**
#### **UnifiedMemoryService**
```typescript
class UnifiedMemoryService implements IMemoryBackend {
constructor(
private agentdb: AgentDBAdapter,
private cache: MemoryCache,
private indexer: HNSWIndexer,
private migrator: DataMigrator
) {}
async store(entry: MemoryEntry): Promise<void> {
// Store in AgentDB with HNSW indexing
await this.agentdb.store(entry);
await this.indexer.index(entry);
}
async query(query: MemoryQuery): Promise<MemoryEntry[]> {
if (query.semantic) {
// Use HNSW vector search (150x-12,500x faster)
return this.indexer.search(query);
} else {
// Use structured query
return this.agentdb.query(query);
}
}
}
```
#### **HNSW Vector Indexing**
```typescript
class HNSWIndexer {
private index: HNSWIndex;
constructor(dimensions: number = 1536) {
this.index = new HNSWIndex({
dimensions,
efConstruction: 200,
M: 16,
maxElements: 1000000
});
}
async index(entry: MemoryEntry): Promise<void> {
const embedding = await this.embedContent(entry.content);
this.index.addPoint(entry.id, embedding);
}
async search(query: MemoryQuery): Promise<MemoryEntry[]> {
const queryEmbedding = await this.embedContent(query.content);
const results = this.index.search(queryEmbedding, query.limit || 10);
return this.retrieveEntries(results);
}
}
```
## Migration Strategy
### **Phase 1: Foundation Setup**
```bash
# Week 3: AgentDB adapter creation
- Create AgentDBAdapter implementing IMemoryBackend
- Setup HNSW indexing infrastructure
- Establish embedding generation pipeline
- Create unified query interface
```
### **Phase 2: Gradual Migration**
```bash
# Week 4-5: System-by-system migration
- SQLiteBackend β AgentDB (structured data)
- MarkdownBackend β AgentDB (document storage)
- MemoryManager β Unified interface
- DistributedMemorySystem β Cross-agent sharing
```
### **Phase 3: Advanced Features**
```bash
# Week 6: Performance optimization
- SONA integration for learning patterns
- Cross-agent memory sharing
- Performance benchmarking (150x validation)
- Backward compatibility layer cleanup
```
## Performance Targets
### **Search Performance**
- **Current**: O(n) linear search through memory entries
- **Target**: O(log n) HNSW approximate nearest neighbor
- **Improvement**: 150x-12,500x depending on dataset size
- **Benchmark**: Sub-100ms queries for 1M+ entries
### **Memory Efficiency**
- **Current**: Multiple backend overhead
- **Target**: Unified storage with compression
- **Improvement**: 50-75% memory reduction
- **Benchmark**: <1GB memory usage for large datasets
### **Query Flexibility**
```typescript
// Unified query interface supports both:
// 1. Semantic similarity queries
await memory.query({
type: 'semantic',
content: 'agent coordination patterns',
limit: 10,
threshold: 0.8
});
// 2. Structured queries
await memory.query({
type: 'structured',
filters: {
agentType: 'security',
timestamp: { after: '2026-01-01' }
},
orderBy: 'relevance'
});
```
## SONA Integration
### **Learning Pattern Storage**
```typescript
class SONAMemoryIntegration {
async storePattern(pattern: LearningPattern): Promise<void> {
// Store in AgentDB with SONA metadata
await this.memory.store({
id: pattern.id,
content: pattern.data,
metadata: {
sonaMode: pattern.mode, // real-time, balanced, research, edge, batch
reward: pattern.reward,
trajectory: pattern.trajectory,
adaptation_time: pattern.adaptationTime
},
embedding: await this.generateEmbedding(pattern.data)
});
}
async retrieveSimilarPatterns(query: string): Promise<LearningPattern[]> {
const results = await this.memory.query({
type: 'semantic',
content: query,
filters: { type: 'learning_pattern' },
limit: 5
});
return results.map(r => this.toLearningPattern(r));
}
}
```
## Data Migration Plan
### **SQLite β AgentDB Migration**
```sql
-- Extract existing data
SELECT id, content, metadata, created_at, agent_id
FROM memory_entries
ORDER BY created_at;
-- Migrate to AgentDB with embeddings
INSERT INTO agentdb_memories (id, content, embedding, metadata)
VALUES (?, ?, generate_embedding(?), ?);
```
### **Markdown β AgentDB Migration**
```typescript
// Process markdown files
for (const file of markdownFiles) {
const content = await fs.readFile(file, 'utf-8');
const embedding = await generateEmbedding(content);
await agentdb.store({
id: generateId(),
content,
embedding,
metadata: {
originalFile: file,
migrationDate: new Date(),
type: 'document'
}
});
}
```
## Validation & Testing
### **Performance Benchmarks**
```typescript
// Benchmark suite
class MemoryBenchmarks {
async benchmarkSearchPerformance(): Promise<BenchmarkResult> {
const queries = this.generateTestQueries(1000);
const startTime = performance.now();
for (const query of queries) {
await this.memory.query(query);
}
const endTime = performance.now();
return {
queriesPerSecond: queries.length / (endTime - startTime) * 1000,
avgLatency: (endTime - startTime) / queries.length,
improvement: this.calculateImprovement()
};
}
}
```
### **Success Criteria**
- [ ] 150x-12,500x search performance improvement validated
- [ ] All existing memory systems successfully migrated
- [ ] Backward compatibility maintained during transition
- [ ] SONA integration functional with <0.05ms adaptation
- [ ] Cross-agent memory sharing operational
- [ ] 50-75% memory usage reduction achieved
## Coordination Points
### **Integration Architect (Agent #10)**
- AgentDB integration with agentic-flow@alpha
- SONA learning mode configuration
- Performance optimization coordination
### **Core Architect (Agent #5)**
- Memory service interfaces in DDD structure
- Event sourcing integration for memory operations
- Domain boundary definitions for memory access
### **Performance Engineer (Agent #14)**
- Benchmark validation of 150x-12,500x improvements
- Memory usage profiling and optimization
- Performance regression testing