from typing import Any, Dict, List, Optional
from loguru import logger
# from src.asr_got_reimagined.domain.models.graph_elements import FalsificationCriteria, BiasFlag # If needed
def assess_falsifiability_score(
criteria: Optional[Any],
) -> float: # criteria: Optional[FalsificationCriteria]
logger.warning(
"Falsifiability assessment (P1.16) not fully implemented. Returning placeholder."
)
return 0.5 if criteria else 0.0
def detect_potential_biases(node_data: Dict[str, Any]) -> List[Any]: # List[BiasFlag]
logger.warning(
"Bias detection (P1.17) not fully implemented. Returning placeholder."
)
return []
def calculate_semantic_similarity(text1: str, text2: str) -> float:
"""P1.8: Semantic similarity for IBN creation."""
logger.warning(
"Semantic similarity calculation not fully implemented. Returning placeholder."
)
# Placeholder - use NLP models (e.g., sentence transformers) in a real implementation
if not text1 or not text2:
return 0.0
# Simple common word overlap for now
words1 = set(text1.lower().split())
words2 = set(text2.lower().split())
if not words1 or not words2:
return 0.0
return len(words1.intersection(words2)) / len(words1.union(words2))