from typing import List, Optional
from loguru import logger
from src.asr_got_reimagined.domain.models.common import CertaintyScore, ConfidenceVector
from src.asr_got_reimagined.domain.models.graph_elements import EdgeType, StatisticalPower
def bayesian_update_confidence(
prior_confidence: ConfidenceVector,
evidence_strength: CertaintyScore, # A single score representing how strong this piece of evidence is
evidence_supports_hypothesis: bool, # True if supportive, False if contradictory
statistical_power: Optional[StatisticalPower] = None, # P1.26
edge_type: Optional[EdgeType] = None, # P1.10, P1.24, P1.25 for context
) -> ConfidenceVector:
"""
Simplified Bayesian-inspired update for a ConfidenceVector.
P1.14: Apply Bayesian updates... considering evidence reliability (P1.26 power) and edge type.
Args:
prior_confidence: The current confidence vector of the hypothesis.
evidence_strength: A score (0-1) indicating the strength/reliability of the new evidence.
evidence_supports_hypothesis: Boolean indicating if evidence supports or contradicts.
statistical_power: Statistical power of the evidence.
edge_type: Type of edge connecting evidence to hypothesis, can influence update.
Returns:
A new ConfidenceVector with updated values.
"""
# This is a highly simplified placeholder. True Bayesian updates involve likelihoods, priors, etc.
# and updating probability distributions, not just scores.
# P1.14 mentions "probability distributions" for confidence components.
# For now, we'll do a weighted adjustment.
# Weight factor considers evidence strength and statistical power.
power_multiplier = (
statistical_power.value if statistical_power else 0.5
) # Default if no power info
weight = evidence_strength * power_multiplier
# Edge type influence (P1.14) - very simplified
edge_type_factor = 1.0
if edge_type:
if edge_type in [EdgeType.CAUSES, EdgeType.SUPPORTIVE]:
edge_type_factor = 1.1
elif edge_type == EdgeType.CORRELATIVE:
edge_type_factor = 0.9
elif edge_type == EdgeType.CONTRADICTORY:
# This case should be handled by evidence_supports_hypothesis=False
pass
weight *= edge_type_factor
weight = max(0, min(weight, 1.0)) # Clamp weight
new_confidence_values = prior_confidence.to_list()
target_value = 1.0 if evidence_supports_hypothesis else 0.0
# Adjust each component of the confidence vector
# A more sophisticated approach would update each dimension based on how the evidence relates to it.
# E.g., empirical evidence primarily boosts empirical_support.
# This simple version boosts/reduces all components slightly.
for i in range(len(new_confidence_values)):
current_val = new_confidence_values[i]
adjustment = weight * (target_value - current_val)
new_confidence_values[i] = max(0.0, min(1.0, current_val + adjustment))
logger.debug(
f"Bayesian update: Prior {prior_confidence.to_list()}, Evidence Strength {evidence_strength}, "
f"Supports: {evidence_supports_hypothesis}, Power: {power_multiplier}, Edge: {edge_type} "
f"-> New {new_confidence_values}"
)
return ConfidenceVector.from_list(new_confidence_values)
def calculate_information_gain(
prior_distribution: List[float], posterior_distribution: List[float]
) -> float:
"""
Placeholder for calculating information gain (e.g., KL divergence reduction). P1.27.
This would compare the uncertainty before and after evidence.
"""
# Simplified: sum of absolute changes in probability for now
if len(prior_distribution) != len(posterior_distribution):
return 0.0 # Or raise error
gain = sum(
abs(p - q) for p, q in zip(prior_distribution, posterior_distribution)
) / len(prior_distribution)
logger.debug(f"Calculated simplified info gain: {gain}")
return gain