Skip to main content
Glama

MCP Orchestration Server

agent_configs.json7.45 kB
{ "example_http_agent": { "id": "example_http_agent", "name": "Example HTTP API Agent", "description": "Example agent accessible via HTTP API", "connection_type": "http_api", "endpoint": "http://localhost:8001", "headers": { "Content-Type": "application/json", "Authorization": "Bearer your-token-here" }, "health_check": "http://localhost:8001/health", "endpoints": { "process": "/process", "status": "/status" }, "keywords": [ "example", "demo", "test" ], "patterns": [ "example\\s+(.+)", "demo\\s+(.+)" ], "input_types": [ "text", "json" ], "output_types": [ "json" ], "enabled": false }, "python_module_agent": { "id": "python_module_agent", "name": "Python Module Agent", "description": "Agent implemented as Python module", "connection_type": "python_module", "module_path": "your_agents.example_agent", "class_name": "ExampleAgent", "init_params": { "config_param": "value" }, "keywords": [ "python", "module", "local" ], "patterns": [ "python\\s+(.+)", "local\\s+(.+)" ], "input_types": [ "text", "dict" ], "output_types": [ "dict", "json" ], "enabled": false }, "function_agent": { "id": "function_agent", "name": "Function-based Agent", "description": "Agent implemented as a simple function", "connection_type": "function_call", "module_path": "your_agents.functions", "function_name": "process_request", "keywords": [ "function", "simple", "quick" ], "patterns": [ "function\\s+(.+)", "quick\\s+(.+)" ], "input_types": [ "text" ], "output_types": [ "text", "dict" ], "enabled": false }, "websocket_agent": { "id": "websocket_agent", "name": "WebSocket Agent", "description": "Real-time agent via WebSocket", "connection_type": "websocket", "websocket_url": "ws://localhost:8002/ws", "protocols": [ "agent-protocol" ], "headers": {}, "keywords": [ "realtime", "websocket", "live" ], "patterns": [ "realtime\\s+(.+)", "live\\s+(.+)" ], "input_types": [ "text", "json" ], "output_types": [ "json", "stream" ], "enabled": false }, "grpc_agent": { "id": "grpc_agent", "name": "gRPC Agent", "description": "High-performance agent via gRPC", "connection_type": "grpc", "grpc_endpoint": "localhost:50051", "service": "AgentService", "methods": { "Process": "process_request", "Status": "get_status" }, "keywords": [ "grpc", "performance", "fast" ], "patterns": [ "grpc\\s+(.+)", "fast\\s+(.+)" ], "input_types": [ "protobuf", "json" ], "output_types": [ "protobuf", "json" ], "enabled": false }, "simple_text_agent": { "id": "simple_text_agent", "name": "Simple Text Processing Agent", "description": "Processes text without any code modifications", "connection_type": "python_module", "module_path": "example_agents.simple_agent", "class_name": "SimpleAgent", "init_params": { "agent_name": "ConnectedSimpleAgent" }, "keywords": [ "text", "simple", "analyze", "process" ], "patterns": [ "analyze\\s+(.+)", "process\\s+(.+)", "simple\\s+(.+)" ], "enabled": true }, "quick_function_agent": { "id": "quick_function_agent", "name": "Quick Function Processor", "description": "Quick processing via function call", "connection_type": "function_call", "module_path": "example_agents.simple_agent", "function_name": "quick_processor", "keywords": [ "quick", "fast", "function" ], "patterns": [ "quick\\s+(.+)", "fast\\s+(.+)" ], "enabled": true }, "data_processor": { "id": "data_processor", "name": "Data Processing Agent", "description": "Processes and transforms various data formats", "connection_type": "python_module", "module_path": "example_agents.simple_agent", "class_name": "DataProcessor", "keywords": [ "data", "process", "transform", "convert", "format" ], "patterns": [ "process\\s+data", "transform\\s+(.+)", "convert\\s+(.+)" ], "capabilities": { "data_transformation": true, "format_conversion": true, "data_validation": true, "batch_processing": true }, "collaboration_roles": [ "processor", "transformer" ], "enabled": true, "auto_connect": true }, "research_agent": { "id": "research_agent", "name": "Research Assistant Agent", "description": "Conducts research and gathers information", "connection_type": "function_call", "module_path": "sample_agents.researcher", "function_name": "research_topic", "keywords": [ "research", "investigate", "gather", "information" ], "patterns": [ "research\\s+(.+)", "investigate\\s+(.+)" ], "input_types": [ "text" ], "output_types": [ "dict" ], "enabled": true, "auto_connect": true }, "summary_agent": { "id": "summary_agent", "name": "Document Summary Agent", "description": "Creates summaries of documents and text", "connection_type": "function_call", "module_path": "sample_agents.summarizer", "function_name": "create_summary", "keywords": [ "summary", "summarize", "brief", "overview" ], "patterns": [ "summary\\s+(.+)", "summarize\\s+(.+)" ], "input_types": [ "text" ], "output_types": [ "text" ], "enabled": true, "auto_connect": true }, "text_analyzer": { "id": "text_analyzer", "name": "Text Analysis Agent", "description": "Analyzes text for sentiment, keywords, and insights", "connection_type": "function_call", "module_path": "sample_agents.text_analyzer", "function_name": "analyze_text", "keywords": [ "analyze", "sentiment", "keywords", "insights" ], "patterns": [ "analyze\\s+(.+)", "sentiment\\s+(.+)" ], "input_types": [ "text" ], "output_types": [ "dict" ], "enabled": true, "auto_connect": true }, "validation_agent": { "id": "validation_agent", "name": "Validation Agent", "description": "Validates and verifies information accuracy", "connection_type": "python_module", "module_path": "example_agents.simple_agent", "class_name": "SimpleAgent", "init_params": { "agent_name": "Validator" }, "keywords": [ "validate", "verify", "check", "confirm", "accuracy" ], "patterns": [ "validate\\s+(.+)", "verify\\s+(.+)", "check\\s+(.+)" ], "capabilities": { "fact_checking": true, "data_validation": true, "accuracy_verification": true, "quality_assurance": true }, "collaboration_roles": [ "validator", "checker" ], "enabled": true, "auto_connect": true } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nisarg-123-web/MCP2'

If you have feedback or need assistance with the MCP directory API, please join our Discord server