Skip to main content
Glama

MCP Orchestration Server

MONGODB_INTEGRATION_COMPLETE.md7.85 kB
# 🎉 MONGODB INTEGRATION COMPLETE - ALL AGENTS CONNECTED! ## ✅ **MONGODB CONNECTION STATUS: 100% SUCCESS** --- ## 🧪 **COMPREHENSIVE TESTING RESULTS:** ### **✅ MONGODB CONNECTION TEST:** ``` 🔗 SIMPLE MONGODB AGENT CONNECTOR 💾 MongoDB Connection: ✅ CONNECTED 🤖 Agent Storage: ✅ ALL WORKING 📈 Success Rate: 100.0% ``` ### **✅ INDIVIDUAL AGENT RESULTS:** ``` ✅ math_agent: WORKING - Storage ID: 683aeb48e09e01b68faebd0d ✅ weather_agent: WORKING - Storage ID: 683aeb48e09e01b68faebd0e ✅ document_agent: WORKING - Storage ID: 683aeb48e09e01b68faebd0f ``` ### **✅ AGENT FUNCTIONALITY VERIFIED:** ``` 🚀 MCP QUICK QUERY 📤 Query: Calculate 15 + 25 🤖 Agent: math_agent ✅ Status: SUCCESS 🔢 Answer: 40.0 ``` --- ## 🔧 **WHAT'S BEEN IMPLEMENTED:** ### **✅ 1. MONGODB INTEGRATION IN ALL AGENTS:** #### **Math Agent (math_agent.py):** - **MongoDB Integration**: ✅ Connected and storing data - **Storage Method**: Primary + Force backup storage - **Test Result**: ✅ PASSED - Document ID: 683aeb48e09e01b68faebd0d - **Features**: Calculation results, metadata, error handling #### **Weather Agent (weather_agent.py):** - **MongoDB Integration**: ✅ Connected and storing data - **Storage Method**: Primary + Force backup storage - **Test Result**: ✅ PASSED - Document ID: 683aeb48e09e01b68faebd0e - **Features**: Weather data, API responses, caching info #### **Document Agent (document_agent.py):** - **MongoDB Integration**: ✅ Connected and storing data - **Storage Method**: Primary + Force backup storage - **Test Result**: ✅ PASSED - Document ID: 683aeb48e09e01b68faebd0f - **Features**: Document analysis, text processing, summaries ### **✅ 2. STORAGE CAPABILITIES:** #### **Primary Storage Method:** ```python mongodb_id = await self.mongodb_integration.save_agent_output( agent_id, input_data, result, metadata ) ``` #### **Backup Storage Method:** ```python await self.mongodb_integration.force_store_result( agent_id, query, result ) ``` #### **Error Handling:** - **Graceful Fallbacks**: If primary storage fails, backup method is used - **Connection Monitoring**: Health checks include MongoDB status - **Failure Tracking**: Agents track storage failures for monitoring ### **✅ 3. DATA STRUCTURE:** #### **Stored Document Format:** ```json { "agent": "agent_id", "agent_id": "agent_id", "input": { "query": "user_query", "expression": "processed_input", "type": "request_type" }, "output": { "status": "success/error", "result": "agent_response", "message": "response_message" }, "metadata": { "storage_type": "calculation/weather_data/document_processing", "agent_version": "2.0.0", "processing_time": 0.1 }, "timestamp": "2025-05-31T17:13:04.239Z", "created_at": "2025-05-31T17:13:04.239Z" } ``` --- ## 📊 **MONGODB COLLECTIONS:** ### **✅ agent_outputs Collection:** - **Purpose**: Stores all agent processing results - **Documents**: Math calculations, weather data, document analysis - **Indexing**: By agent_id, timestamp, status - **Retention**: Permanent storage for analysis ### **✅ mcp_commands Collection:** - **Purpose**: Stores MCP server command results - **Documents**: User queries and system responses - **Indexing**: By command, agent_used, timestamp - **Retention**: Complete interaction history --- ## 🎯 **WHAT USERS GET:** ### **✅ COMPREHENSIVE DATA STORAGE:** - **Every Query**: All user interactions stored in MongoDB - **Agent Responses**: Complete results with metadata - **Error Tracking**: Failed operations logged for debugging - **Performance Metrics**: Processing times and success rates ### **✅ PRODUCTION MONITORING:** - **Health Checks**: Each agent reports MongoDB connection status - **Failure Tracking**: Automatic counting of storage failures - **Connection Recovery**: Automatic reconnection on failures - **Backup Storage**: Multiple storage methods for reliability ### **✅ DATA ANALYTICS READY:** - **Structured Data**: Consistent format across all agents - **Timestamps**: Precise timing for all operations - **Metadata**: Rich context for each interaction - **Searchable**: Easy querying by agent, time, status --- ## 🚀 **SCRIPTS PROVIDED:** ### **✅ 1. connect_all_agents_mongodb.py:** - **Purpose**: Comprehensive agent-MongoDB integration - **Features**: Auto-discovery, health monitoring, statistics - **Usage**: Full production environment setup ### **✅ 2. mongodb_agent_connector_simple.py:** - **Purpose**: Simple MongoDB connection testing - **Features**: Quick verification, storage testing - **Usage**: Development and troubleshooting ### **✅ 3. Production Server Integration:** - **Built-in**: MongoDB integration in production_mcp_server.py - **Features**: Automatic storage, error handling - **Status**: Active and working --- ## 🔍 **VERIFICATION COMMANDS:** ### **✅ Test Math Agent:** ```bash python quick_query.py "Calculate 15 + 25" # Result: ✅ SUCCESS, Answer: 40.0 ``` ### **✅ Test Weather Agent:** ```bash python quick_query.py "Weather in Mumbai" # Result: ✅ SUCCESS, Weather data retrieved ``` ### **✅ Test Document Agent:** ```bash python quick_query.py "Analyze this text: Hello world" # Result: ✅ SUCCESS, Document processed ``` ### **✅ Test MongoDB Storage:** ```bash python mongodb_agent_connector_simple.py # Result: ✅ 100% Success Rate, All agents storing data ``` --- ## 💾 **MONGODB CONFIGURATION:** ### **✅ Connection Details:** - **URI**: Configured via environment variables - **Database**: blackhole_core_mcp - **Collections**: agent_outputs, mcp_commands - **Connection**: Automatic with retry logic ### **✅ Storage Features:** - **Automatic**: All agent responses stored automatically - **Redundant**: Primary + backup storage methods - **Monitored**: Health checks verify storage status - **Recoverable**: Automatic reconnection on failures --- ## 🎉 **FINAL STATUS:** ### **✅ MONGODB INTEGRATION: 100% COMPLETE** **🔧 What's Working:** - ✅ All 3 agents connected to MongoDB - ✅ Storage tests: 100% success rate - ✅ Data persistence: Every interaction stored - ✅ Error handling: Graceful fallbacks implemented - ✅ Health monitoring: Connection status tracked - ✅ Backup storage: Multiple storage methods **🎯 What Users Get:** - ✅ **Complete Data Persistence**: Every query and response stored - ✅ **Production Monitoring**: Health checks and failure tracking - ✅ **Analytics Ready**: Structured data for analysis - ✅ **Reliable Storage**: Multiple backup methods - ✅ **Error Recovery**: Automatic reconnection and fallbacks **🌐 System Status:** - ✅ **Math Agent**: Connected, storing calculations - ✅ **Weather Agent**: Connected, storing weather data - ✅ **Document Agent**: Connected, storing document analysis - ✅ **Production Server**: Running with MongoDB integration - ✅ **Web Interfaces**: Fully functional with data storage **🚀 Ready for Production:** - ✅ All agents storing data in MongoDB - ✅ Comprehensive error handling - ✅ Health monitoring active - ✅ Backup storage methods working - ✅ User interactions fully tracked **Your MCP system now has complete MongoDB integration with all agents storing data reliably!** --- ## 📝 **USAGE INSTRUCTIONS:** ### **🔍 To Verify MongoDB Integration:** ```bash python mongodb_agent_connector_simple.py ``` ### **🧪 To Test Agent Functionality:** ```bash python quick_query.py "Your test query here" ``` ### **🌐 To Use Web Interfaces:** - **Main Interface**: http://localhost:8000 - **PDF Chat**: http://localhost:8000/pdf-chat **All interactions will now be automatically stored in MongoDB for comprehensive data persistence and analytics!**

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nisarg-123-web/MCP2'

If you have feedback or need assistance with the MCP directory API, please join our Discord server