Skip to main content
Glama

MCP Orchestration Server

PRODUCTION_STRUCTURE.md5.77 kB
# MCP Production System - Final Structure ## 🎯 **PRODUCTION-READY FILES ONLY** ### **📁 Core Production Files:** ``` mcp_production/ ├── mcp_server.py # 🚀 Main production server ├── mcp_client.py # 💻 Command-line client ├── start_mcp.py # 🔧 Startup script ├── .env # 🔐 Environment configuration ├── requirements.txt # 📦 Dependencies └── README.md # 📚 Documentation ``` ### **📁 Agent System:** ``` agents/ ├── __init__.py # 🔧 Agent discovery ├── agent_loader.py # 🔄 Agent management ├── base_agent.py # 🏗️ Base agent class ├── core/ │ └── document_processor.py # 📄 Document analysis ├── data/ │ ├── __init__.py │ └── realtime_weather_agent.py # 🌤️ Live weather data ├── communication/ │ └── real_gmail_agent.py # 📧 Email automation └── specialized/ └── gmail_agent.py # 📧 Gmail integration ``` ### **📁 Core Integrations:** ``` ├── mcp_mongodb_integration.py # 💾 Database integration └── mcp_workflow_engine.py # 🤖 Workflow automation ``` ## 🚀 **QUICK START COMMANDS** ### **1. Start Production Server:** ```bash python start_mcp.py ``` ### **2. Test Weather (Live Data):** ```bash python mcp_client.py -c "What is the weather in Mumbai?" ``` ### **3. Interactive Mode:** ```bash python mcp_client.py ``` ### **4. Health Check:** ```bash curl http://localhost:8000/api/health ``` ## 🌤️ **LIVE DATA FEATURES** ### **✅ Real-Time Weather:** - **API**: OpenWeatherMap (your key: 3ddbad481c9c80e472352b68d1c9b370) - **Coverage**: Global cities - **Data**: Temperature, humidity, wind, pressure, conditions - **Response**: Professional weather reports with advice ### **✅ Document Processing:** - **Types**: PDF, TXT, images - **Analysis**: Key points, summaries, author detection - **Storage**: MongoDB with full metadata - **Queries**: Natural language document questions ### **✅ Email Automation:** - **Service**: Gmail SMTP - **Features**: Professional templates, automated sending - **Integration**: Workflow-based email generation - **Security**: App passwords, secure authentication ### **✅ Automated Workflows:** - **Commands**: Natural language multi-step tasks - **Example**: "Process weather report and email summary to manager@company.com" - **Execution**: Automatic agent coordination - **Storage**: All results saved to MongoDB ## 🔧 **CONFIGURATION** ### **Required Environment Variables (.env):** ```bash # MongoDB (Required) MONGO_URI=mongodb+srv://your-connection-string MONGO_DB_NAME=blackhole_db MONGO_COLLECTION_NAME=agent_outputs # Weather API (Required) OPENWEATHER_API_KEY=3ddbad481c9c80e472352b68d1c9b370 # Gmail (Optional) GMAIL_EMAIL=your-email@gmail.com GMAIL_APP_PASSWORD=your-app-password # Server MCP_HOST=localhost MCP_PORT=8000 ``` ## 📡 **API ENDPOINTS** ### **Commands:** ```http POST /api/mcp/command {"command": "What is the weather in Mumbai?"} ``` ### **Document Analysis:** ```http POST /api/mcp/analyze {"documents": [...], "query": "Extract key points"} ``` ### **Automated Workflows:** ```http POST /api/mcp/workflow {"documents": [...], "query": "Process and email to user@example.com"} ``` ### **Health Check:** ```http GET /api/health ``` ### **Available Agents:** ```http GET /api/mcp/agents ``` ## 🎯 **PRODUCTION FEATURES** ### **✅ Live Data Only:** - ❌ No demo/fallback data - ✅ Real-time weather from OpenWeatherMap API - ✅ Actual email sending via Gmail SMTP - ✅ Live MongoDB storage and retrieval ### **✅ Natural Language Processing:** - ✅ Weather queries: "What's the weather in Mumbai?" - ✅ Document analysis: "Extract important points" - ✅ Email workflows: "Process and email to manager@company.com" ### **✅ Professional Output:** - ✅ Formatted weather reports with advice - ✅ Structured document analysis - ✅ Professional email templates - ✅ Comprehensive workflow results ### **✅ Production Ready:** - ✅ Error handling and logging - ✅ Health monitoring endpoints - ✅ Secure credential management - ✅ Scalable agent architecture ## 🌟 **USAGE EXAMPLES** ### **Weather Queries:** ```bash python mcp_client.py -c "What is the weather in Mumbai?" python mcp_client.py -c "Delhi weather" python mcp_client.py -c "Temperature in New York" ``` ### **Document Processing:** ```bash python mcp_client.py -f document.txt -q "Extract key points" python mcp_client.py -f report.pdf -q "Who are the authors?" ``` ### **Email Workflows:** ```bash python mcp_client.py -c "Process weather report and email alerts to emergency@city.gov" ``` ## 🔍 **MONITORING** ### **Server Health:** ```json { "status": "ok", "mcp_server": "running", "agents_loaded": 4, "mongodb_connected": true, "workflow_engine": true, "timestamp": "2025-05-28T16:30:00" } ``` ### **Agent Status:** ```json { "realtime_weather_agent": "Live weather data", "document_processor": "Document analysis", "real_gmail_agent": "Email automation", "workflow_engine": "Multi-step automation" } ``` ## 🎉 **PRODUCTION READY!** Your MCP system is now: - ✅ **Concise**: Only essential production files - ✅ **Live Data**: Real-time weather and email integration - ✅ **Professional**: Production-grade code and documentation - ✅ **Scalable**: Modular agent architecture - ✅ **Secure**: Proper credential management - ✅ **Tested**: Verified working with live data **🚀 Ready for immediate production deployment!**

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nisarg-123-web/MCP2'

If you have feedback or need assistance with the MCP directory API, please join our Discord server